Студопедия — Математические модели дискретных каналов связи
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математические модели дискретных каналов связи






 

В дискретном канале всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Для модели дискретного канала входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число m различных символов, из которых формируется последовательность (основание кода), а также длительность передачи каждого символа. Будем считать значение одинаковым для всех символов, что выполняется в большинстве современных каналов. Величина определяется количеством символов, передаваемых в единицу времени. Она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывается появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

При подаче на вход канала любой заданной последовательности кодовых символов, на выходе появится некоторая реализация случайной последовательности . Кодовые символы обозначим числами от 0 до m-1.

Введем еще одно определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю m) между принятой и переданной кодовыми последовательностями (векторами)). Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю m):

(1.4)

где и - случайные последовательности из n символов на входе и выходе канала; -случайный вектор ошибки. Различные модели отличаются распределением вероятностей вектора . Смысл вектора ошибки особенно прост в случае двоичных каналов (m=2), тогда его компоненты принимают значение 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный приём символа. Число ненулевых символов в векторе ошибок называется его весом.

Перечислим наиболее важные и достаточно простые модели дискретных каналов

1) Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью p и правильно с вероятностью 1-p, причем в случай ошибки вместо переданного символа в может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ , если был передан

(1.5)

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т.е. от того, какие символы передавались до него и как они были приняты.

Очевидно, что вероятность любого n – мерного вектора ошибки в таком канале

, (1.6)

где -число ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло каких угодно ошибок, расположенных как угодно на протяжении последовательности длинноq n, определяется формулой Бернулли:

(1.7)

где -биномиальный коэффициент, равный числу различных сочетаний l ошибок в блоке длиной n.

Эту модель называют также биноминальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале, отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов показаны в виде графа на рис. а:

2) симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит, дополнительный (m+1)-u символ, обозначаемый знаком «?».

Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. б) схематически показаны вероятности переходов в такой модели.

3) Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность р (1/0) приема символа «1» при передаче символа «0» не равна вероятности р (0/1) приема «0» при передаче»1» (рис. в)).

4) Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т.е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается. Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом используется ОФМ.

5) Канал с аддитивным дискретным шумом. Является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность, каждого вектора ошибки считается заданной. Имеется тенденция к тому, что в векторе ошибки единицы расположены близко друг к другу, то есть группированию ошибок.

Раздел 2 Основные положения теории передачи информации







Дата добавления: 2014-11-12; просмотров: 2056. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия