Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАССЕЯНИЕ ПУЧКА ЧАСТИЦ В СЛОЕ ГАЗА





Рис. 19. Рассеяния пучка частиц в слое газа
Рассмотрим случай, когда из вакуума на слой частиц набегает монохроматический () поток частиц, причем сечение потока равно единице. Пусть частицы потока движутся вдоль оси , начало слоя газа совпадает с началом координат (рис. 19). Будем полагать, что любое столкновение приводит к тому, что частица типа 1 покидает поток.

Поскольку частицы пучка после столкновения с частицами газа покидают поток, то его изменение в слое газа вблизи некоторой точки составит в . Подставляя сюда выражение для (43), получим

Полученное уравнение приводим к виду

После чего его нетрудно проинтегрировать

Поскольку по предположению поток монохроматический, , то , и последнюю формулу можно переписать для концентрации частиц в пучке

Таким образом, мы видим, что концентрация убывает по экспоненциальному закону. С помощью полученного распределения концентрации частиц в пучке по координате можно найти среднее расстояние, которое проходит частица пучка до рассеяния:

Величина есть средняя длина свободного пробега (длина пробега).

Рис. 20. Описание столкновения частиц в модели жестких сфер
Простую интерпретацию рассмотренных нами параметров взаимодействия частиц — сечения столкновения и длины свободного пробега можно дать с помощью модели жестких сфер, представляя частицы недеформируемыми телами сферической формы. Согласно рис. 20 столкновение двух сфер с радиусами соответственно и произойдет, если траектории их движения вписываются в цилиндр с радиусом меньшим или равным . Поэтому полное сечение столкновения в модели жестких сфер есть . Рассчитаем с помощью модели жестких сфер длину свободного пробега . По определению, на отрезке пути длиной частица 1 испытывает одно столкновение с частицей сорта 2. Поэтому внутри цилиндра, имеющего сечение основания равное и длину равную должна находиться ровно одна частица типа 2. Следовательно . Отсюда

Полученный результат совпадает с выведенной формулой (44). Выше отмечались характерные условия движения частиц в идеальном газe, при которых размеры частиц много меньше характерных расстояний между ними: . Отсюда , т. е. длина свободного пробега много больше среднего расстояния между частицами. В воздухе м-3, м, м. Следовательно, условие выполнено.







Дата добавления: 2014-11-12; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия