Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УРАВНЕНИЕ ЭНЕРГИИ. ПОЛНАЯ СИСТЕМА УРАВНЕНИЙ МЕХАНИКИ СПЛОШНОЙ СРЕДЫ





Наряду с уравнениями сохранения массы и импульса, которые были использованы выше для вывода уравнений неразрывности и движения, при описании сплошной среды используется также и уравнение энергии. Уравнение энергии рассмотрим для частного случае адиабатического процесса, когда отсутствует теплообмен между элементами сплошной среды. В этом случае изменение внутренней энергии Е элемента сплошной среды с массой (жидкой частицы) связано только с изменением его объема (при отсутствии объемных источников тепловыделения): . Вводя в рассмотрение энергию на единицу массы вещества , получим

Поскольку , то

.

В соответствии с уравнением неразрывности , поэтому

.

Данное уравнение описывает распределение объемной плотности внутренней энергии и его изменение, вызываемое деформацией и движением среды. Вместе с тем к изменению внутренней энергии могут приводить процессы, связанные с выделением или поглощением энергии, например при нагреве электрическим током или при химических реакциях. Для учета этих явлений модифицируем последнее уравнение добавлением в его правую часть слагаемого , имеющего размерность Вт/м3, описывающего скорость выделения или поглощения, в зависимости от знака, энергии в точках сплошной среды.

Таким образом, полная система уравнений динамики идеальной жидкости (газа) в адиабатическом режиме имеет вид

(58)

Последнее равенство есть уравнение состояния, замыкающее систему и определяющее конкретные физические свойства среды. Приведем примеры уравнения состояния:

1. Идеальный газ: , где — постоянная Больцмана, n — концентрация частиц в газе, M — масса частицы.

2. Несжимаемая жидкость:

3. Вода при высоких давлениях , где , — давление и плотность при нормальных условиях.

Последний пример показывает, что для увеличения плотности воды на 20 % необходимо избыточное давление . Возвращаясь к уравнению энергии, получаем

,

где вместо взято произведение концентрации частиц на массу частицы. Частицы газа в общем случае имеют s степеней свободы. На каждую степень свободы при термодинамическом равновесии приходится энергия . Тогда после подстановки выражения для внутренней энергии единицы массы идеального газа в уравнение энергии получим

,

откуда

, ,

где и — постоянные. Последнему равенству можно придать вид , где — показатель адиабаты. Постоянную можно определить из начальных условий . В результате уравнение адиабаты получит вид

У газа с тремя степенями свободы . На практике степенная зависимость давления от плотности, удобная при расчетах, используется для аппроксимации реальных характеристик газов, получаемых экспериментально. Параметр при этом называется эффективным показателем адиабаты, а число — эффективное число степеней свободы. Например, водяной пар при температуре около 10000оК и давлении Па имеет . Этому показателю адиабаты соответствует . Столь высокое число степеней свободы свидетельствует о том, что молекулы помимо поступательного движения совершают вращение и испытывают колебания, т. е. у них возбуждены «внутренние» степени свободы.







Дата добавления: 2014-11-12; просмотров: 1856. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия