ТЕПЛОПРОВОДНОСТЬ
Тепловые режимы и процессы в электроэнергетическом и электрофизическом оборудовании играют важную роль, определяя их рабочие характеристики и предельные возможности. Роль тепловых процессов в газоразрядных явлениях и технологиях также во многих случаях носит определяющий характер. Поэтому разделы физики, относящиеся к процессам теплопередачи, представляют для указанных инженерных областей особый интерес. Ниже будут рассмотрены классические модели теплопередачи и методы решения соответствующих задач для ряда характерных условий. Ранее мы получили уравнение энергии для сплошной среды где ρ — массовая плотность, ε — объемная плотность внутренней энергии, P — давление, v — вектор скорости движения среды, Одним из важнейших физических механизмов теплообмена в сплошной среде является теплопроводность. Качественно на микроуровне явление теплопроводности в газах объясняется передачей энергии теплового движения частиц при столкновениях. Частицы газа, находящиеся в областях с большей температурой имеют более высокую кинетическую энергию теплового движения и при столкновениях с частицами их соседних более холодных элементов передают часть этой энергии. Таким образом, внутренняя энергия передается из более нагретой области в менее нагретую. В твердых телах, например в металлах, механизм теплопроводности реализуется в результате обмена энергией тепловых колебаний между узлами кристаллической решетки. В более нагретых областях эти колебания интенсивнее, чем в менее нагретых, однако возможность распространения колебаний в кристаллических решетках обеспечивает передачу их энергии из более нагретых областей в менее нагретые. Феноменологические свойства явления сформулированы в математической форме в начале 19 века Био и Фурье. Поток тепловой энергии или тепловой поток описывается с помощью закона Фурье
где
Как видно из формулы (69) интенсивность теплопередачи определяется не только градиентом температуры, но и средой, свойства которой выражены в коэффициенте теплопроводности
где В зависимости от знака Уравнение баланса энергии с учетом теплопроводности выведем на основе уравнения энергии (68). Без ограничения общности здесь рассмотрим малый элемент сплошной среды Скорость изменения теплосодержания Разделив последнее уравнение на В случае неподвижной среды v=0, и последнее уравнение примет вид В достаточно широком интервале температур плотность внутренней энергии можно связать с температурой хорошо известным из общего курса физики линейным законом
После подстановки вместо теплового потока
В случае стационарного температурного поля последнее уравнение упрощается вследствие исчезновения производной по времени
Уравнение (71) описывает стационарное распределение температуры в пространстве с неподвижной средой. Для решения уравнения стационарной теплопроводности (71), которое является дифференциальным уравнением в частных производных, необходимы граничные условия, которые устанавливают физические законы температурного поля на границе расчетной области.
|