Студопедия — Дифференцирование сложной функции
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференцирование сложной функции






R
1. Дифференцирование сложной функции

Пусть функция z = f (x;y) определена в области G Ì , а х и у сами являются функциями от переменной t: х = φ;(t), у = ψ;(t). Пусть t изменяется в промежутке так, что (х; у)=(φ;(t); ψ;(t))Î G. В этом случае функция

z = f (φ;(t); ψ;(t))= F (t) (1)

является сложной функцией одной переменной t.

Теорема 1. Если существуют производные , в точке t и существуют непрерывные частные производные , в соответствующей точке (х; у)=(φ;(t); ψ;(t)), то существует производная от сложной функции (1), и она может быть вычислена по формуле:

. (2)

Доказательство.

Придадим переменной t приращение тогда x и y получат соответствующие приращения и , а функция z = f (x; у) получит приращение . Так как z = f (x; у) в точке (x;y) имеет непрерывные частные производные, то по теореме 3 §4 она дифференцируема в этой точке. Следовательно, ее полное приращение может быть записано в следующем виде:

= , где , .

Разделим равенство на :

. (3)

Пусть . Так как функции х = φ;(t) и у = ψ;(t) дифференцируемы в точке t, то они непрерывны в этой точке. Тогда при . Значит, и , при . Т.к. функции x и у по условию имеют производные и в точке t, то

, .

Это означает, что правая часть (3) имеет предел при :

.

Тогда существует предел и левой части (3) при : .

Переходя в (3) к пределу при , получим (2).

Частный случай: , то есть . Тогда

.

R
Пример 1. z (x, y)= , x =e , y =ln(1 -t). Найти .

D z определена на , . z является функцией от t:

(*) z (t)= , .

Вычислим по формуле (2).

.

Но можно найти и непосредственно из (*). D

Эффективность дифференцирования по формуле (2) проявляется в более сложных примерах.

Пример2. .

D .

Непосредственно отсюда вычислить сложно.

(подставить вместо х и у выражения через t). D

Пример 3. .

D Пусть , тогда z = f (x, y), х = φ;(t), у = ψ;(t),

. D

Пусть теперь функция z = f (x, y) задана в некоторой области G а x и y являются функциями от переменных u и v: . Причём u и v определены в такой области Н, что "(u, v) Н точка (х, у)= Î G. Тогда z является сложной функцией от переменных u и v:

. (4)

Теорема 2. Если существуют частные производные на H и непрерывные частные производные на области G, то существуют частные производные от сложной функции (4) на H, которые могут быть вычислены по формулам:

(5)

. (6)

 

Доказательство.

Пусть (u, v) Н. Зафиксируем v. Тогда (4) обращается в сложную функцию одной переменной u вида (1), к которой можно применить теорему 1. На основании этой теоремы

.

Аналогично, фиксируя u, получим сложную функцию одной переменной v: к которой можно применить теорему 1, получим (6).

Пример 4. Найти частные производные сложной функции .

D Обозначим - промежуточные переменные, x, y, z – независимые переменные.

,

,

. D

 

2. Инвариантность формы дифференциала

I. Пусть z = f (x, y), где x, y – независимые переменные, определена в области G. Пусть на G функция f имеет непрерывные частные производные. Тогда она дифференцируема и её дифференциал

, (1)

где , т.е. dx, dy – произвольные числа не зависящие от x и y.

II. Пусть теперь z является сложной функцией от переменных u и v, т.е. z = f (x, y), , . Независимые переменные u и v определены в области Н так, что . Тогда . Пусть на Н существуют непрерывные частные производные и на G - непрерывные частные производные и тогда существуют непрерывные частные производные и от сложной функции z = h (u, v):

, (2)

. (3)

Тогда сложная функция z = h (u, v) дифференцируема и её дифференциал

, (4)

du, dv – произвольные числа.

Подставляя (2) и (3) в (4), получим

.

Итак, , (5)

dx – дифференциал функции , ,

dy - дифференциал функции , .

Сравнив (1) и (5), можем сделать вывод. Дифференциал функции f имеет одну и ту же форму относительно x и y: , как в случае, когда x и y - независимые переменные, так и в случае, когда x и y – функции от других переменных. Это свойство называется инвариантностью формы полного дифференциала. Хотя форма (1) инвариантна (т.е. неизменна), но смысл символов dx и dy не один и тот же. Если x и y - независимые переменные, то dx и dy – числа, не зависящие от x, y. Если же x и y – функции, то dx и dy – дифференциалы этих функций.

Итак, так как форма (1) инвариантна, то полный дифференциал функции всегда может быть записан в виде (1).

Замечание. Если x и y – независимые переменные, то существуют две формы записи дифференциала: . Если x и y функции, то .

 







Дата добавления: 2015-10-19; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия