Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная по направлению. Градиент





 

1. Производная по направлению

Рассмотрим функцию трех переменных u = f (x, y, z), определенную на множестве G. Пусть точка . Через точку М 0 проведём прямую l. Выберем произвольно на l точку М 1 и установим таким образом направление . Тогда l – прямая с выбранным направлением.

Пусть М (x, y, z) – переменная точка на прямой l. Через М 0 М обозначим ориентированную длину отрезка М 0 М, т.е. М 0 М =| М 0 М |, если направление отрезка совпадает с направлением l (точки М и М 1 лежат по одну сторону от точки М 0) и М 0 М =-| М 0 М |, если направление отрезка не совпадает с направлением l. Полное приращение функции:

.

Определение. Если существует конечный предел

,

то он называется производной функции f в точке М 0 по направлению l.

Обозначается .

Замечание. Производная функции f (x) в точке х 0- это скорость изменения функции в точке х 0. Частная производная - скорость изменения функции в точке М 0 по направлению оси О х; частная производная - скорость при функции в точке М 0 по направлению оси О у, а - по направлению оси O z. Тогда - скорость изменения функции в точке М 0 по направлению l. Если направление l совпадает с положительным направлением оси О х, то = . Аналогично для . Т.е. частные производные функции – это производные по направлению координатных осей.

Теорема (достаточное условие существования производной по направлению l). Если u = f (x, y, z) дифференцируема в точке М 0, то в этой точке существует производная по направлению, исходящему из точки М 0, и

, (1)

где - направляющие косинусы направления l (координаты единичного вектора в этом направлении).

Доказательство.

Проведём через точку М 0 прямую l возьмём на ней точку М , - ориентированная длина.

.

 
 

По условию функция f дифференцируема в точке М 0. Следовательно, её полное приращение можно записать в виде

, (2)

где при . Разделим (2) на :

. (3)

Пусть М ® М 0. Тогда . Тогда (проекции на оси координат) стремятся к 0. Следовательно, . Значит, правая часть равенства (3) при стремится к . Это означает, что существует и левой части: . Переходя в (3) к , получим (1).

Пример. . Найти производную в точке М 0(1,-2,3) в направлении вектора, соединяющего точки А (1;2;3) и В (3;3;1).

(2,1,-2), , .

, ,

, ,

, ,

.

2. Градиент

Пусть функция u = f (x, y, z) определена и дифференцируема на множестве G.

Определение. Градиентом функции u = f (x, y, z) в точке М 0 называется вектор с координатами .

Обозначается или .

Итак, .

Если функция f дифференцируема на G, то в каждой точке М G определён вектор . В этом случае говорят, что градиент функции f образует векторное поле на G, и оно называется векторным полем градиентов.

Теорема. Если функция u = f (x, y, z) дифференцируема в точке М 0, то производная по направлению l в точке М 0 равна проекции градиента функции f в этой точке на направление l.

Доказательство.

Т.к. функция f дифференцируема в точке М 0, то в этой точке существуют производная по направлению l и градиент, т.е. имеем

,

.

Через обозначим единичный вектор направления l: .

Тогда (скалярное произведение).

Т.к. , где - угол между векторами и , то, учитывая, что а , получим . Следовательно, .

Свойства градиента

1. Производная в данной точке М 0 по направлению l имеет наибольшее значение, если направление l совпадает с направлением градиента. Это наибольшее значение

.

Доказательство.

.

Ясно, что имеет наибольшее значение, когда , т.е. когда φ;=0. Это означает, что направление совпадает с направлением .

Лекц.3 2. Производная по направлению вектора, перпендикулярного к вектору градиента, равна нулю (следует из доказательства теоремы).

3. В каждой точке М 0 области определения функции градиент функции f направлен по нормали к поверхности уровня проходящей через эту точку.

4. ;

5. , где с = const;

6.

Свойства 4-6 следуют из определения градиента и правил дифференцирования.

 







Дата добавления: 2015-10-19; просмотров: 2966. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия