Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания для самостоятельной работы. 1.1.Шар радиуса R заряжен с объемной плотностью заряда r = r0(1-r/R) , где r0=const и r – расстояние от центра шара





1.1. Шар радиуса R заряжен с объемной плотностью заряда r = r0(1-r/R), где r0=const и r – расстояние от центра шара. Найти напряженность электрического поля внутри и вне шара, а также максимальное значение напряженности Emax и соответствующее ему значение расстояния rm.

 

1.2. Шар радиуса R равномерно заряжен с объемной плотностью заряда r. Найти поток вектора напряженности электрического поля через сечение шара, которое образовано плоскостью, отстоящей от центра шара на расстояние r0< R.

 

1. 3. Два точечных заряда q и -q расположены на расстоянии 2l друг от друга. Найти поток вектора напряженности электрического поля через круг радиуса R (см. рис.).

 

 

1.4. Внутри шара радиуса R, заряженного равномерно с объемной плотностью заряда r, имеется сферическая полость радиуса r0, центр которой совпадает с центром шара. Определить напряженность и потенциал электрического поля системы.

 

1.5. В центре сферы радиуса R, равномерно заряженной с поверхностной плотностью заряда s, находится точечный заряд q. Определить напряженность и потенциал электрического поля внутри и вне сферы.

1.6. Система состоит из шара радиуса R, заряженного сферически симметрично, и окружающей среды, заполненной зарядом с объемной плотностью заряда r = a/r, где a - постоянная, r – расстояние от центра шара. Найти заряд шара, при котором модуль вектора напряженности электрического поля вне шара не будет зависеть от r. Чему равна эта напряженность?

 

1.7. Заряд q распределен равномерно по объему шара радиуса R. Найти напряженность и потенциал электрического поля в центре шара, внутри и вне шара как функцию расстояния r от его центра.

 

1.8. Две концентрические сферы радиусами R1 и R2 (R1 < R2) равномерно заряжены зарядами q и – q соответственно. Определить напряженность и потенциал электрического поля при r £ R1, R1 £ r £ R2 и r ³ R2, где r – расстояние от центра сфер.

 

1.9. Внутри бесконечного круглого полого цилиндра радиуса R, равномерно заряженного так, что на единицу его длины приходится заряд t, находится бесконечная нить, совпадающая с осью цилиндра. Нить равномерно заряжена с линейной плотностью заряда - t. Определить напряженность и потенциал электрического поля внутри и вне цилиндра как функцию расстояния r от оси цилиндра в цилиндрической системе координат.

 

1.10. Бесконечный круглый цилиндр радиуса R равномерно заряжен с объемной плотностью заряда r. Определить напряженность и потенциал электрического поля внутри и вне цилиндра как функцию расстояния r от оси цилиндра в цилиндрической системе координат.

 

1.11. В бесконечном круглом цилиндре радиуса R1, равномерно заряженном с объемной плотностью заряда r, имеется цилиндрическая полость радиуса R2 (R1 > R2). Оси цилиндра и полости совпадают. Определить напряженность и потенциал электрического поля как функцию r цилиндрической системы координат при r £ R2, R2 £ r £ R1 и r ³ R1.

 

1.12. Бесконечная плоская плита толщиной а равномерно заряжена по объему с плотностью r. Найти напряженность электрического поля внутри и вне плиты.

 

1.13. Заряд электрона распределен в атоме водорода, находящемся в основном состоянии, с плотностью , где а – радиус боровской орбиты и r – расстояние от центра ядра. Найти напряженность электрического поля электронного облака в атоме водорода, а также величину r0, выразив ее через заряд электрона е и радиус боровской орбиты а.

1.14. Пространство заполнено зарядом с объемной плотностью , где r0 и a - положительные константы, а r - расстояние от центра данной системы. Найти напряженность электрического поля как функцию r. Исследовать полученное выражение при малых и больших r, т.е. при ar 3 <<1 и ar 3>>1.

 

1.15. Пространство между двумя концентрическими сферами. радиусы которых R1 и R2, (R1 < R2), заряжено с объемной плотностью r = a/r2. Найти полный заряд системы, напряженность и потенциал электрического поля внутри сфер, между сферами и вне сфер.

 

1.16. Найти напряженность и потенциал электрического поля сферы радиуса R, равномерно заряженной по поверхности. Заряд сферы q.

 

 







Дата добавления: 2015-10-19; просмотров: 2641. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия