Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства дисперсии





1. Если все варианты увеличить или уменьшить в k раз, то дисперсия увеличится или уменьшится в k раз.

2. Увеличение или уменьшение вариантов на одну и ту же величину не меняет дисперсию.

3. Если все частоты увеличить или уменьшить в несколько раз, то дисперсия не изменится.

4. Дисперсия относительно средней арифметической равна дисперсии относительно произвольной постоянной без квадрата разности между средней арифметической и этой постоянной.

(5.6)

(5.7)

5. Дисперсия равна средней арифметической квадратов вариантов без квадрата средней арифметической.

Если в 4-м свойстве дисперсии с=0, то имеем формулу:

(5.8)

(5.9)

Дисперсию можно рассчитать тремя способами.

Пример: определить дисперсию затрат на 1 руб. реализованных путевок по 30 пансионатам:

Затраты (х) на 1 руб., коп. Число пансионатов (f)
менее 75     (70–82)2×5=720   702×5=24500
75–85          
85–95          
95 и выше          
Итого 30 1680 1800 203400

 

Решить можно тремя способами, используя свойства дисперсии.

Способ 1.

.

 

Способ 2.

– способ моментов

За число «с» принимается варианта, расположенная в середине ряда распределения, или варианта, имеющая наибольшую частоту (в нашем случае с=80).

.

Способ 3..

 

 

Г. Среднее квадратическое отклонение ( s ) – это арифметическое значение корня квадратного из дисперсии:

(5.10)

Отклонение затрат на 1 руб. реализованных путевок от среднего значения составляет 7,48 коп.

Хотелось бы отметить, что отношение среднего квадратического отклонения к среднему линейному приблизительно равно 1,2:

(5.11)

Так, при s =7,48 прогнозируемое значение d=6,23, а реальное (рассчитанное по исходным данным) d=6,00.

Д. Коэффициент вариации ( n ) – это отношение среднего квадратического отклонения к средней арифметической, выраженное в процентах:

(5.12)

Он показывает долю колебания признака от средней арифметической. Применяется для сравнения вариаций признака в различных совокупностях и для характеристики колебания различных признаков в одной совокупности.

Коэффициент вариации характеризует также степень однородности совокупности и качества средних величин, т.е. если коэффициент вариации от 0 до 20 %, то совокупность – однородная, если коэффициент вариации – от 20 до 50% – совокупность средней однородности, т.е. необходимо осторожно использовать среднюю, если свыше 50% – совокупность неоднородна, и средней нельзя пользоваться для прогнозирования перспективных показателей признака.

Целесообразно расчет каждой средней величины дополнять расчетом коэффициента вариации для характеристики степени однородности совокупности и оценки качества средней величины. В нашем примере коэффициент вариации составит:

Это означает, что совокупность предприятий по уровню затрат на 1 руб. проданных путевок является однородной. Средней величиной пользоваться можно.

Пример: В течение одного квартала производство продукции в среднем за декаду на заводе № 1 составило 25 млн руб. при n=5 млн руб., на заводе № 2 – соответственно 100 млн руб. и 10 млн руб. Определить, какой завод работал ритмичнее, т.е. с меньшей колеблемостью выпуска продукции по дням?

Для решения задачи необходимо найти коэффициенты вариации выпуска продукции по двум заводам в отдельности и сравнить их.

Второе предприятие работало ритмичнее, так как

 

 







Дата добавления: 2015-10-19; просмотров: 742. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия