Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства дисперсии





1. Если все варианты увеличить или уменьшить в k раз, то дисперсия увеличится или уменьшится в k раз.

2. Увеличение или уменьшение вариантов на одну и ту же величину не меняет дисперсию.

3. Если все частоты увеличить или уменьшить в несколько раз, то дисперсия не изменится.

4. Дисперсия относительно средней арифметической равна дисперсии относительно произвольной постоянной без квадрата разности между средней арифметической и этой постоянной.

(5.6)

(5.7)

5. Дисперсия равна средней арифметической квадратов вариантов без квадрата средней арифметической.

Если в 4-м свойстве дисперсии с=0, то имеем формулу:

(5.8)

(5.9)

Дисперсию можно рассчитать тремя способами.

Пример: определить дисперсию затрат на 1 руб. реализованных путевок по 30 пансионатам:

Затраты (х) на 1 руб., коп. Число пансионатов (f)
менее 75     (70–82)2×5=720   702×5=24500
75–85          
85–95          
95 и выше          
Итого 30 1680 1800 203400

 

Решить можно тремя способами, используя свойства дисперсии.

Способ 1.

.

 

Способ 2.

– способ моментов

За число «с» принимается варианта, расположенная в середине ряда распределения, или варианта, имеющая наибольшую частоту (в нашем случае с=80).

.

Способ 3..

 

 

Г. Среднее квадратическое отклонение ( s ) – это арифметическое значение корня квадратного из дисперсии:

(5.10)

Отклонение затрат на 1 руб. реализованных путевок от среднего значения составляет 7,48 коп.

Хотелось бы отметить, что отношение среднего квадратического отклонения к среднему линейному приблизительно равно 1,2:

(5.11)

Так, при s =7,48 прогнозируемое значение d=6,23, а реальное (рассчитанное по исходным данным) d=6,00.

Д. Коэффициент вариации ( n ) – это отношение среднего квадратического отклонения к средней арифметической, выраженное в процентах:

(5.12)

Он показывает долю колебания признака от средней арифметической. Применяется для сравнения вариаций признака в различных совокупностях и для характеристики колебания различных признаков в одной совокупности.

Коэффициент вариации характеризует также степень однородности совокупности и качества средних величин, т.е. если коэффициент вариации от 0 до 20 %, то совокупность – однородная, если коэффициент вариации – от 20 до 50% – совокупность средней однородности, т.е. необходимо осторожно использовать среднюю, если свыше 50% – совокупность неоднородна, и средней нельзя пользоваться для прогнозирования перспективных показателей признака.

Целесообразно расчет каждой средней величины дополнять расчетом коэффициента вариации для характеристики степени однородности совокупности и оценки качества средней величины. В нашем примере коэффициент вариации составит:

Это означает, что совокупность предприятий по уровню затрат на 1 руб. проданных путевок является однородной. Средней величиной пользоваться можно.

Пример: В течение одного квартала производство продукции в среднем за декаду на заводе № 1 составило 25 млн руб. при n=5 млн руб., на заводе № 2 – соответственно 100 млн руб. и 10 млн руб. Определить, какой завод работал ритмичнее, т.е. с меньшей колеблемостью выпуска продукции по дням?

Для решения задачи необходимо найти коэффициенты вариации выпуска продукции по двум заводам в отдельности и сравнить их.

Второе предприятие работало ритмичнее, так как

 

 







Дата добавления: 2015-10-19; просмотров: 742. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия