Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Бернулли





Часто встречаются задачи, в которых одно и то же испытание повторяется многократно. В результате каждого испытания может появиться или не появиться некоторое событие . Нас будет интересовать число наступлений события в серии из испытаний.

Определение 1. Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода – появление события (“успех”) или не появление его (“неудача”), при этом “успех” в каждом испытании происходит с вероятностью , а неудача с вероятностью .

Теорема (формула Бернулли). Вероятность того, что в испытаниях по схеме Бернулли “успех” наступит ровно раз: (1.19)

Доказательство. Все испытаний можно рассматривать как одно сложное испытание, имеющее возможных исходов. (Например, при возможные исходы такого сложного испытания – ).

1) Число благоприятных исходов равно числу способов, которыми можно расположить успехов на различных местах, то есть равно .

2) Вероятность каждого отдельного исхода можно подсчитать по формуле произведения вероятностей независимых событий. Например, вероятность появления комбинации: равна . Очевидно, что вероятности остальных комбинаций равны также .

Поскольку все исходы являются несовместными событиями, то вероятность, что событие в испытаниях появится ровно раз: .

Определение 2. Числа называются биномиальными вероятностями.

Пример 1. Для контроля качества из партии деталей отбирается 5 деталей. Партия бракуется, если в выборке хотя бы две бракованные детали. Найти вероятность того, что партия будет забракована, если каждая деталь может оказаться бракованной с вероятностью 0,01.

Решение. Найдем вероятность того, что в выборке из 5 деталей будет не более одной бракованной детали:

.

Тогда вероятность того, что партия будет забракована: .

Если каждое испытание имеет исходов, вероятности которых , , то вероятность того, что в испытаниях первый исход появится раз, второй исход появится раз и т.д. определится по формуле:

. (1.20)

Доказательство формулы аналогично случаю двух исходов.







Дата добавления: 2015-12-04; просмотров: 242. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия