Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Развертки многогранников





Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Поверхность называется развертывающейся,если онаможет быть совмещена с плоскостью без разрывов и складок. Многогранник – развертывающаяся поверхность.

Построение развертки боковой поверхности многогранника осуществляется в два основных этапа:

1) определением истинных размеров всех элементов каждой ее грани. Именно благодаря им можно построить изображение этой поверхности в натуральную величину;

2) последовательное построение каждой грани в натуральную величину исходя из найденных раньше элементов.

Для получения полной развертки призмы необходимо к развертке боковой поверхности пристроить верхнее и нижнее основания (рис. 25).

Для получения полной развертки пирамиды необходимо к развертке боковой поверхности пристроить основание. Боковая развертка строится по методу треугольников, т.е. совмещение всех треугольников, из которых состоят грани, в одну плоскость (рис. 26).

Построение развертки призмы начинают с развертки ее снования. На произвольно проведенной прямой откладывают последовательно все натуральные величины ребер основания. Затем от каждой полученной вершины основания перпендикулярно полученным отрезкам (т.к. призма прямая) откладывают натуральные величины боковых ребер. А уже затем пристраивают основания. Если призма усеченная, то длины ребер будут различными, а вместо верхнего основания пристраивают натуральную величину сечения.

Рисунок 25 – Построение полной развертки прямой правильной призмы

Рисунок 26 – Построение полной развертки правильной пирамиды  

Развертку пирамиды (рис. 26) начинают с построения вершины S. Затем в произвольном направлении откладывают длину первого ребра АS.

 

Так как пирамида правильная, то все ее боковые ребра равны между собой, поэтому можно из вершины S провести дугу радиусом А S, на которой будут лежать точки В, С, D. Для их нахождения на дуге от точки А последовательно откладывают отрезки, равные ребрам основания пирамиды. Затем к любому из полученных отрезков пристраивают основание пирамиды. Если на развертку необходимо нанести точку, лежащую на поверхности пирамиды, то через точку предварительно проводят вспомогательную прямую. На рисунке 26 показано построение точки Е, лежащей на поверхности пирамиды.







Дата добавления: 2015-12-04; просмотров: 302. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия