Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неархимедово упорядоченное поле





В качестве примера (вернее, контрпримера) упорядоченного поля, для которого не выполнена аксиома Архимеда, рассмотрим совокупность рациональных функций с действительными коэффициентами, то есть функций вида

Относительно обычных операций сложения и умножения эта совокупность образует поле. Введем отношение порядка на совокупности рациональных функций следующим образом. Пусть и — две рациональные функции. Мы скажем, что , если и только если в некоторой окрестности разность имеет строго положительный знак. Это условие можно сформулировать и в терминах коэффициентов рациональных функций и . Запишем разность в виде многочлен + правильная рациональная дробь:

где второе слагаемое в правой части — правильная рациональная дробь, то есть степень числителя меньше степени знаменателя: . Будем также считать что старший коэффициент знаменателя равен . Тогда тогда и только тогда, когда либо , либо полиноминальная часть отсутствует и . Несложно проверить корректность этого определения порядка (следует проверить как то, что введенное отношение действительно является отношением порядка, и что это отношение согласовано с операциями поля).

Таким образом, совокупность рациональных функций образует упорядоченное поле. Заметим, что оно является расширением поля действительных чисел, но аксиома Архимеда здесь не имеет места (см. конец предыдущего раздела!). Действительно, рассмотрим элементы и . Очевидно, каким бы ни было натуральное число , имеет место неравенство:

Другими словами, — бесконечно большой элемент поля. Тем самым аксиома Архимеда в этом поле не имеет места.

Пло́тное мно́жество — подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства.







Дата добавления: 2015-06-15; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия