Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лемма Гейне — Бореля





Формулировка Пусть — замкнутое ограниченное множество в пространстве . Тогда из всякой системы открытых множеств, покрывающих множество , можно выделить конечную подсистему, также покрывающую множество .

Кратко говорят так: всякое открытое покрытие замкнутого ограниченного множества в пространстве содержит конечное подпокрытие. При этом покрытие называется открытым, если оно состоит из открытых множеств.

Имеет место и обратное предложение: для того чтобы всякое открытое покрытие множества содержало конечное подпокрытие необходимо, чтобы множество было замкнутым и ограниченным.

Первое доказательство Пусть отрезок покрыт бесконечной системой интервалов. Предположим, что никакое конечное число интервалов из не покрывает данный отрезок. Разделим отрезок пополам на два равных отрезка: и . По крайней мере один из них нельзя покрыть конечной подсистемой интервалов из . Обозначим его и повторим для него процедуру деления пополам.

Продолжая на каждом шаге делить отрезки пополам, мы получим последовательность вложенных отрезков, по длине стремящихся к нулю, такую что каждый отрезок этой последовательности не может быть покрыт конечным числом интервалов из . Но если — точка, в которую стягиваются отрезки, то, поскольку лежит на отрезке , она должна входить в некоторый интервал системы . Тогда все отрезки последовательности , начиная с некоторого номера, будут покрыты интервалом . Полученное противоречие доказывает справедливость леммы Гейне — Бореля.

Второе доказательство Пусть система интервалов покрывает отрезок . Обозначим через множество всех точек , для которых отрезок может быть покрыт конечным числом интервалов из . Ясно, что если всякий отрезок вида может быть покрыт конечным числом интервалов из , то же верно и для отрезка : для этого возьмем интервал , покрывающий точку , и добавив его к конечному покрытию какого-нибудь отрезка , где , получим конечное покрытие отрезка . Более того, полученная конечная подсистема интервалов покрывает не только отрезок , но и некоторый отрезок вида , где .

Из первого следует, что точная верхняя грань множества принадлежит множеству . Из второго, что она должна быть равна . Тем самым, , то есть отрезок может быть покрыт конечным числом интервалом из .

 







Дата добавления: 2015-06-15; просмотров: 840. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия