Понятие множества
Понятия множества и его элемента относятся к числу первичных, неопределяемых понятий математики. К таким же понятиям относятся точки, прямая линия и др. Создатель теории множеств Георг Кантор в 1872 году описал понятие множества, как «объединения в одно целое объектов, хорошо различаемых нашей интуицией или нашей мыслью». Мы будем говорить, что определено некоторое множество объектов, если указан признак, который позволяет относительно каждого предмета сказать, принадлежит ли этот предмет множеству , или нет. Элементы множеств в дальнейшем будем записывать строчными латинскими буквами, сами множества – прописными. Обозначение используется, как краткая запись утверждения: есть элемент множества , или: принадлежит . Аналогично, обозначение используется, как краткая запись утверждения: не является элементом множества , или: не принадлежит . Множество, не имеющее элементов, называется пустым и обозначается . Укажем ряд способов задания множеств. Во-первых, можно просто перечислить все элементы множества, если этих элементов – конечное число, т.е. если множество конечное. Например, множество, состоящее из двух чисел, 0 и 1. В этом случае используется обозначение {0,1}. Для произвольного конечного множества, например, состоящего из различных элементов , используется обозначение . Подчеркнём, что в этом обозначении множества элементы должны быть различными, однако они могут быть перечислены в произвольном порядке, например, и - различные обозначения одного и того же множества. Можно также указать свойство, которому удовлетворяют элементы рассматриваемого множества. Например, множество действительных чисел, больших 5. Обозначим его . Некоторые множества определяются с помощью указания способа последовательного построения его элементов. Например, . Новые множества можно получать и в результате операций над заданными множествами. Наиболее часто у нас будут рассматриваться множество R действительных чисел, множество N натуральных чисел, множество Z целых чисел, множество Q рациональных чисел.
|