Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отбор посторонних корней можно производить или путем сопоставления с множеством допустимых значений переменного, или путем проверки корней





 

Пример 1. Решите уравнение на множестве действительных чисел

.

 

Решение

 

Это уравнение дробно-рациональное. Прежде надо установить область допустимых значений переменной, что удобнее сделать, если разложить знаменатели дробей на множители:

Многочлен если имеет целые корни, то они будут находиться среди делителей свободного члена.

Делители свободного члена: .

После проверки находим, что -2 и 2 являются корнями этого многочлена, значит он делится на произведение (x - 2)(x + 2), т. е. на .

Разделив "уголком" данный многочлен на получим в частном 2x + 3.

Таким образом, многочлен можно представить в виде произведения множителей: .

Два других знаменателя нетрудно разложить на линейные множители:

.

Уравнение примет вид:

.

Теперь достаточно найти наименьший общий знаменатель, а затем область допустимых значений.

Общий знаменатель: .

Область допустимых значений:

или

.

Преобразуем уравнение, умножив обе его части на общий знаменатель, который, по нашему требованию, не равен нулю. Попросту говоря, этот процесс называется ещё с младших классов "приведение к общему знаменателю", получим:

.

Оба корня входят в область допустимых значений, а значит являются решениями уравнениями.

 

Ответ: .








Дата добавления: 2015-04-16; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия