Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов





Непериодический сигнал f (t), например единичный прямоугольный импульс,

можно представить как периодический с периодом Т ® ∞. При этом амплитуды гармонических составляющих, согласно (3.81), будут стремиться к нулю, т.е. станут бесконечно малыми величинами. Кроме того, расстояние между спектральными составляющими, которое определяется основной частотой ω;1=2π/ Т также становится бесконечно малой величиной и спектр из дискретного преобразуется в сплошной.

Таким образом, непериодическое колебание можно рассматривать как сумму бесконечного числа бесконечно малых по амплитуде гармонических колебаний, частоты которых отличаются на бесконечно малые величины и заполняют весь частотный диапазон. Ряд Фурье преобразуется в известный из математики интеграл Фурье:

(3.81)

где (3.82)

Предполагается, что функция f (t) во всяком конечном промежутке удовлетворяет условиям Дирихле, абсолютно интегрируема в бесконечных пределах и f (t)=0 при t <0. Для нас важно, что (3.82) представляет из себя интегральную сумму бесконечно большого числа гармонических колебаний с бесконечно малыми амплитудами | F (;)| ;/π, начальными фазами φ;(ω;) и частотами ω;, непрерывно изменяющимися от ω;=0 до ω;→ ∞.

Функция | F (;)| называется спектральной плотностью амплитуд, т.к. амплитуда составляющих для каждого бесконечно малого диапазона частот от ω; до ω;+ ; пропорциональна значению этой функции. Функция φ;(ω;) характеризует спектр фаз непериодического сигнала. Комплексную функцию F(jω) называют комплексной спектральной плотностью, а соотношение (3.82)-односторонним преобразованием Фурье.

Нетрудно увидеть аналогию и связь преобразований Лапласа и Фурье. Сравнивая (3.82) и (3.40), можно сделать заключение, что одностороннее преобразование Фурье F(jω) может быть получено из преобразования Лапласа F(p) при p = ;,т.е.

(3.83)

Соотношение (3.83) может быть использовано для анализа спектрального состава различных сигналов с использованием обширных таблиц преобразований Лапласа.







Дата добавления: 2015-04-19; просмотров: 578. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия