Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное дифференциальние. Конечно разностная аппроксимация производных





Дифференциальными называются уравнения, в которых неизвестными являются функции, которые входят в уравнения вместе со своими производными.

Если в уравнение входит неизвестная функция только одной переменной, уравнение называется обыкновенным. Если нескольких – уравнением в частных производных.

Порядком дифференциального уравнения называют наивысший порядок производной, входящей в уравнение.

Решить дифференциальное уравнение, значит найти такую функцию , подстановка которой в уравнение обращала бы его в тождество.

Чтобы из уравнения -го порядка получить функцию, необходимо выполнить интегрирований, что дает произвольных постоянных. Решение, выражающее функцию в явном виде, называется общим решением.

Частным решением дифференциального уравнения называется общее решение, для которого указаны конкретные значения произвольных постоянных. Для определения произвольных постоянных необходимо задать столько условий, сколько постоянных, т.е. каков порядок уравнения. Эти условия обычно включают задание значений функции и ее производных в определенной точке, их называют начальными условиями,

или значений функции в нескольких точках, т.е. краевых условий.

Задача нахождения частного решения дифференциального уравнения при заданных начальных условиях называется задачей Коши.

Задача нахождения частного решения дифференциального уравнения при заданных краевых условиях называется краевой задачей.

Наиболее распространенным и универсальным численным методом решения дифференциальных уравнений является метод конечных разностей. Метод включает следующие этапы

1) Замена области непрерывного изменения аргумента дискретным множеством точек, называемых узлами сетки;

2) Аппроксимация производных в узлах конечно-разностными аналогами;

3) Аппроксимация дифференциального уравнения системой линейных или нелинейных разностных уравнений;

4) Решение полученной системы разностных уравнений.

Разностные методы позволяют находить только частное решение. Результат численного решения дифференциального уравнения представляется в виде таблицы . Аналитический вид решения может быть получен аппроксимацией.







Дата добавления: 2015-06-12; просмотров: 554. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия