Пусть М1(x1, y1, z1) – точка, лежащая на прямой l, и
– её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор 
Ясно, что векторы
и
коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,
– канонические уравнения прямой.
Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t. Действительно, из параметрических уравнений получаем
или
. Пример. Записать уравнение прямой
в параметрическом виде. Обозначим
, отсюда x = 2 + 3t, y = –1 + 2t, z = 1 –t.
Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox. Тогда направляющий вектор прямой перпендикулярен Ox, следовательно, m=0. Следовательно, параметрические уравнения прямой примут вид
Исключая из уравнений параметр t, получим уравнения прямой в виде
Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде
. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси. Аналогично, каноническим уравнениям
