Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замкнутом круге Е достигает своего минимума и максимума.





 

Доказательство основной теоремы. Лемма №1. Надо доказать, что | f(x0+x)-f(x0) |< e. Докажем Лемму №1 сначала для многочлена без свободного члена и при x0=0Если A=max(|a0 |,|a1|,.,|a n-1|) и (1)то |f(x)|=|a0xn+.+an-1x|
 
 
,
 
 
т.к | x |< б,и из (1) б<1, тот.к. a0=0 то f(0)=0 Что и требовалось доказать.Теперь докажем непрерывность любого многочлена.f(x0+x)=a0(x0+x)n+.+an pаскрывая все скобки по формуле бинома и собирая вместе члены содинаковыми степенями x получим Многочлен g(x)-это многочлен от x при x0 =0 и а0=0 |f(x0+x)-f(x)|=|g(x)|<e Лемма доказана. Лемма №2 Если дан многочлен n -ой степени, n>0, f(x)=a0xn+a1xn-1+.+an с произвольными комплексными коэффициентами и если k - любоеположительное действительное число, то для достаточно больших по модулюзначений x верно неравенство: |a0xn|>k|a1xn-1+a2xn-2+..+an| (2) Доказательсво. Пусть А=max( ), тогда пологая | x| >1, получим откуда следовательно неравенство (2) будет выполняться если |x|>1 и Лемма №2 доказана. Лемма №3. Доказательство. (3)применим лемму 2: при k=2 существует такое N1, что при |x|> N1 |a0xn|>2|a1xn-1+a2xn-2+..+an| откуда |a1xn-1+a2xn-2+..+an|<|a0xn|/2 тогда из (3) при |x|>N=max(N1,N2) |f(x)|>M что и тебовалось доказать. Лемма №3(Лемма Даламбера). Если при x=x0 многочлен f(x) степени n, не обращаеться в нуль, то существует такое приращение h, в общем случаекомплексное, что |f(x0+h)|<|f(x)| Доказательство. По условию f(x0) не равно нулю, случайно может быть так, что x0 является корнем f’(x),..,f(k-1) (x). Пусть k-я производная будетпервой, не имеющей x0 своим корнем. Такое k существует т.к.f(n)(x0)=n!a0Таким образом
 
 
Т.к f(x0) не равно нулю то поделим обе части уравнения на f(x0)и обозначим Теперь будем выбирать h. Причем будем отдельно выбирать его модуль и егоаргумент.По лемме№1: С другой стороны при (4)Пусть |h|<min(б1, б2), тогда Теперь выберем аргумент h так, чтобы ckhk былодействительным отрицательным числом. При таком выборе ckhk=-| ckhk| следовательно учитывая (4) получим Что доказывает лемму Даламбера. Лемма №5. Если действительная функция комплексного переменного f(x) непрерывна взамкнутом круге Е, то она ограничена. Доказательство.






Дата добавления: 2015-08-17; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия