Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предположим, что это не верно тогда





получена бесконечная ограниченная последовательность xn,из нее можно выбрать сходящуюся подпоследовательность , пусть ее предел равен x0. Так как круг Е замкнут, то x0 пренадлежит Е. Тогда так как f(x) непрерывна получено противоречие, следовательно неверно, предположение о неограничености f(x). Лемма №6. Действительная функция комплексного переменного f(x) непрерывная взамкнутом круге Е достигает своего минимума имаксимума. Доказательство. Докажем это утверждение для максимума.Так как f(x) непрерывна в Е, то она ограничена и следовательносуществует M = sup{ f(x)}. Рассмотрим функцию .Если f(x) не достигает своего максимума, то M> f(x) следовательно M-f(x)>0, следовательно g(x) непрерывна в Е. Полученое противоречит тому, что M = sup{ f(x)}. Следовательнофункция достигает свего максимума. Аналогично доказывается достижение минимума. Доказательство основной теоремы. Пусть дан многочлен f(x), очевидно что если an-свободный член, тоf(0)= an. Теперь применим лемму№3: возьмем М=|f(0)| =|an|тогда существует такое N, что при |x|>N |f(x)|>M. Теперь возьмем круг Еограниченный окружностью с центром в нуле и радиусом N, включая границы круга.Так как (по лемме №1) многочлен f(x)-непрерывен, то и |f(x)|-непрерывен внутризамкнутого круга Е, следовательно(по лемме №6), существует такая точка x0, что для всех x из E выполняется неравенство |f(x)|>=|f(x0)|. x0 является точкой минимума для |f(x)| внутри E. Т.к для любого x:|x|>N|f(x)|>M>|f(0)|>|f(x0)| точка x0 является точкойминимуа |f(x)| на всей комплексной плоскости.|f(x0)|=0 т.к по лемме Даламбера если |f(x0)|¹0 то x0 не точка минимума для |f(x)|Þ x0-корень многочленаf(x).Теорема доказана.







Дата добавления: 2015-08-17; просмотров: 467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия