Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратная матрица





Определение. Матрица В называется обратной по отношению к матрице А, если

.

Из определения следует, что если матрица А имеет обратную, то обе они должны быть квадратными матрицами одного порядка.

Из определения следует, что если матрица В является обратной по отношению к матрице А, то и матрица А является обратной по отношению к матрице А.

Определение. Матрица имеющая обратную матрицу называется обратимой.

Теорема. Если квадратная матрица А имеет обратную, то она единственная.

Доказательство. Пусть В и С – две матрицы обратные к матрице А. Тогда и . Имеем,

, ч.т.д.

Теорема доказана.

Заметим, что точно также доказывается единственность симметричного элемента в любой полугруппе при условии его существования.

Обозначение: если матрица А обратимая, то обратная к ней обозначается (мы можем это сделать в силу ее единственности) через .

Заметим, что если матрица А обратимая, то обратная к ней матрица также является обратимой.

Обозначение. Множество всех обратимых матриц n-го порядка над полем K обозначается через

.

Теорема. (Свойства обратных матриц.)

1. Произведение обратимых матриц одного и того же порядка является обратимой матрицей:

, и .

2. Единичная матрица является обратимой, т.е. если Е – единичная матрица n-го порядка, то

и .

3. Если А обратимая, то и также является обратимой, т.е. если , то и .

Доказательство. 1) Пусть А и В – обратимые матрицы и , – обратные к ним. Покажем, что произведение является матрицей обратной к произведению :

.

Аналогично получаем . Следовательно, матрица АВ имеет обратную и . Отсюда следует, что матрица АВ является обратимой, т.е. , ч.т.д.

2) Так как , то по определению, , т.е. единичная матрица имеет обратную и, следовательно, единичная матрица является обратимой и .

3) Действительно, из определения следует, что матрица А является обратной по отношению к матрице , следовательно, матрица обратимая и . Более того, в силу единственности обратной матрицы следует, что

.

Теорема доказана.

Следствие. Множество является некоммутативной группой относительно умножения.

Доказательство. На множестве умножение матриц является внутренней бинарной алгебраической операцией, поэтому осталось лишь проверить аксиомы группы.

1) Ассоциативность умножения в множестве выполняется потому что умножение квадратных матриц ассоциативно (см теорему о свойствах умножения матриц).

Далее, в предыдущей теореме доказано, что:

2) единичная матрица ;

3) существует обратная ей .

Следствие доказано.

Определение. Обратимая квадратная матрица называется также неособой или невырожденной. Если квадратная матрица не имеет обратной, то она называется особой или вырожденной.

Замечание. Легко доказать существование особых матриц. Например, матрица

является особой (вырожденной, необратимой). Действительно, если бы она была обратимой, то существовала бы обратная к ней и . Пусть далее, . Тогда и отсюда получаем

или , т.е. получаем противоречие.

Аналогично, легко показать существование особых матриц любого порядка. Отсюда следует вывод, что не все квадратные матрицы являются обратимыми.

В дальнейшем, мы найдем необходимое и достаточное условие обратимости квадратной матрицы любого порядка и не только докажем существование обратимых матриц, отличных от единичной матрицы, но и выведем формулу для ее вычисления.







Дата добавления: 2015-08-17; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия