Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рациональные корни многочлена с целыми коэффициентами. Пример. Основная теорема алгебры.





Рациональные корни многочленов с целыми коэффициентами

Прежде, чем дать общую формулировку теоремы о рациональных корнях многочленов с целыми коэффициентами, решим следующую задачу.

Задача. Найти все корни уравнения

являющиеся рациональными числами.

Решение. Предположим, что рассматриваемое уравнение имеет корень, являющийся рациональным числом. Тогда, поскольку каждое рациональное число можно представить в виде несократимой дроби

,

где – число целое, а – число натуральное, то выполняется равенство:

Умножая это равенство на , получаем равенство:

(1)

Теперь преобразуем равенство (1):

Отсюда вытекает, что число нацело делится на число . А из этого, в свою очередь, следует, что, поскольку числа и не имеют общих простых делителей, то число является делителем числа 2. Таким образом, число равно 1 или 2.

Теперь преобразуем равенство (1) по-другому:

Значит, число нацело делится на число . А из этого, в свою очередь, следует, что, так как числа и не имеют общих простых делителей, то число является делителем числа 3. Таким образом, число может быть равно: -1,1,-3 или 3.

Далее, рассматривая все возможные комбинации чисел и , получаем, что дробь

может принимать только следующие значения:

Таким образом, если у исходного уравнения и есть рациональный корень, то искать его нужно среди полученных шести чисел. Других рациональных корней у исходного уравнения быть не может.

Подставляя поочередно каждое из этих чисел в исходное уравнение, получаем, что корнем уравнения является лишь число .

Оставляя читателю проверку того, что другие числа корнями исходного уравнения не являются, покажем, что число действительно является его корнем:

Ответ. Число является единственным рациональным корнем исходного уравнения.

Замечание. Для того, чтобы найти все остальные корни исходного уравнения, нужно, воспользовавшись теоремой Безу, разделить многочлен

на двучлен

В результате деления получится квадратный трехчлен

после чего остается лишь решить квадратное уравнение:

Теорема. Если рациональное число (несократимая дробь)

,

где – число целое, а – число натуральное, является корнем многочлена -ой степени

все коэффициенты

которого являются целыми числами, то числитель дроби является делителем коэффициента , а знаменатель дроби является делителем коэффициента .

Коэффициент называют старшим коэффициентом многочлена, а коэффициент - свободным членом многочлена.

 

Основная теорема алгебры. Всякий многочлен с любыми комплексными коэффициентами, степень которого неменьше единицы имеет хотя бы один корень, в общем случае комплексный.






Дата добавления: 2015-08-17; просмотров: 1313. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия