Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рациональные корни многочлена с целыми коэффициентами. Пример. Основная теорема алгебры.





Рациональные корни многочленов с целыми коэффициентами

Прежде, чем дать общую формулировку теоремы о рациональных корнях многочленов с целыми коэффициентами, решим следующую задачу.

Задача. Найти все корни уравнения

являющиеся рациональными числами.

Решение. Предположим, что рассматриваемое уравнение имеет корень, являющийся рациональным числом. Тогда, поскольку каждое рациональное число можно представить в виде несократимой дроби

,

где – число целое, а – число натуральное, то выполняется равенство:

Умножая это равенство на , получаем равенство:

(1)

Теперь преобразуем равенство (1):

Отсюда вытекает, что число нацело делится на число . А из этого, в свою очередь, следует, что, поскольку числа и не имеют общих простых делителей, то число является делителем числа 2. Таким образом, число равно 1 или 2.

Теперь преобразуем равенство (1) по-другому:

Значит, число нацело делится на число . А из этого, в свою очередь, следует, что, так как числа и не имеют общих простых делителей, то число является делителем числа 3. Таким образом, число может быть равно: -1,1,-3 или 3.

Далее, рассматривая все возможные комбинации чисел и , получаем, что дробь

может принимать только следующие значения:

Таким образом, если у исходного уравнения и есть рациональный корень, то искать его нужно среди полученных шести чисел. Других рациональных корней у исходного уравнения быть не может.

Подставляя поочередно каждое из этих чисел в исходное уравнение, получаем, что корнем уравнения является лишь число .

Оставляя читателю проверку того, что другие числа корнями исходного уравнения не являются, покажем, что число действительно является его корнем:

Ответ. Число является единственным рациональным корнем исходного уравнения.

Замечание. Для того, чтобы найти все остальные корни исходного уравнения, нужно, воспользовавшись теоремой Безу, разделить многочлен

на двучлен

В результате деления получится квадратный трехчлен

после чего остается лишь решить квадратное уравнение:

Теорема. Если рациональное число (несократимая дробь)

,

где – число целое, а – число натуральное, является корнем многочлена -ой степени

все коэффициенты

которого являются целыми числами, то числитель дроби является делителем коэффициента , а знаменатель дроби является делителем коэффициента .

Коэффициент называют старшим коэффициентом многочлена, а коэффициент - свободным членом многочлена.

 

Основная теорема алгебры. Всякий многочлен с любыми комплексными коэффициентами, степень которого неменьше единицы имеет хотя бы один корень, в общем случае комплексный.






Дата добавления: 2015-08-17; просмотров: 1313. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия