Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Размерность. Базис конечномерного пространства





 

Определение 2. Элементы линейного пространства называются линейно зависимыми, если найдутся числа , не все равные нулю и такие, что

. (1.6)

Определение 3. Элементы линейного пространства называются

линейно независимыми, если из равенства (1.6) вытекает, что .

Свойство линейной зависимости характеризуется предложением.

Предложение 5. Элементы линейно зависимы тогда и только тогда, когда один из этих элементов может быть представлен в виде линейной комбинации остальных.

Доказательство. Пусть элементы линейно зависимы, тогда выполнено (1.6). Причем найдется такой номер , что . Поделив (1.6) на , получим

,

откуда, выражая элемент , получим требуемое представление

.

Верно обратное утверждение. Пусть элемент является линейной комбинацией остальных, т.е. имеется представление

.

Отсюда имеем

.

Таким образом, получили соотношение, вида (1.6), с коэффициентом перед отличным от нуля. Поэтому элементы - линейно зависимы. Предложение доказано.

Определение 4. Если в пространстве можно найти линейно независимых

элементов, а любые элементов линейно зависимы, то говорят, что пространство имеет размерность .

 

 

Определение 5. Линейное пространство , в котором можно указать сколь

угодно большое число линейно независимых элементов, называется бесконечномерным.

Определение 6. Система линейно независимых элементов линейного пространство называется базисом пространства , если для всякого вектора существует разложение

. (1.7)

Заметим, что коэффициенты разложения (1.7) определяются однозначно. В самом деле, пусть имеется два разложения

,

.

Вычитая из одного разложения другое, получим равенство

,

из которого в силу линейной независимости элементов следует, что

.

Однозначно определяемые числа называются координатами вектора в базисе . Далее имеет место теорема.

Теорема 1. В пространстве любая совокупность из линейно независимых элементов пространства является базисом этого пространства.

Доказательство. Пусть - система из линейно независимых элементов. Возьмем произвольный элемент и рассмотрим совокупность из элементов . Она линейно зависима, поскольку число элементов равно . Поэтому существует соотношение вида

. (1.8)

Число . В противном случае получили бы соотношение, вида (1.6), в котором не все числа равны нулю. А это противоречит условию линейной независимости элементов . Следовательно . Далее из (1.8) имеем

,

т.е. получим необходимое разложение. Теорема доказана.

Следующая теорема является обратной по отношению к теореме 1.

Теорема 2. Если в пространстве имеется базис, то размерность этого пространства равна числу базисных элементов.

Доказательство. Пусть элементы образуют базис пространства . По определению базиса они линейно независимы. Покажем, что любые элементов пространства линейно зависимы. Рассмотрим элементов и разложим по базису

,

,

……………………………….

.

Далее, записывая в отдельный столбец координаты этих векторов, составим матрицу с строками и столбцами

Ранг матрицы не превосходит и, как доказывается в линейной алгебре [1,2], один столбец является линейной комбинацией остальных столбцов. В соответствие с этим, один вектор является линейной комбинацией остальных и, согласно предложению 5, элементы линейно зависимы. Теорема доказана.

 







Дата добавления: 2015-08-29; просмотров: 501. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия