Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изоморфизм линейных пространств





Определение 9. Линейные пространства и называются изоморфными, если между их элементами можно установить взаимно однозначное соответствие, причем из того, что и , следует, что и .

Иначе говоря, это взаимно однозначное соответствие сохраняет алгебраические операции. Далее покажем, что всякое - мерное линейное действительное пространство изоморфно арифметическому пространству . Для этого обозначим через базис пространства , который существует в силу теоремы 1, и разложим произвольный элемент по базису: .

Соотнося элементу вектор с компонентами , получим взаимно однозначное соответствие между и . Построенное соответствие является линейным изоморфизмом, поскольку, если и , то .

 

1.6. Фактор – пространства

Пусть - линейное пространство и - некоторое линейное многообразие. Два элемента и из назовем эквивалентными, если их разность принадлежит . Это отношение является рефлексивным, симметричным и транзитивным, т.е. определяет разбиение всех на классы. Совокупность всех таких классов называется фактор - пространством по и обозначается . Если произвольный элемент из класса , то всякий другой элемент из представим в виде , где .

В множестве всех классов можно ввести алгебраические операции. Пусть и два класса из . Выберем в каждом классе по представителю, например и соответственно, и назовем суммой классов и тот класс , который содержит элемент , а произведением класса на число тот класс, который содержит элемент .

Это определение, как легко проверить, не зависит от выбора элементов и - представителей классов и . Введенные операции удовлетворяют аксиомам линейного пространства. Поэтому множество становится линейным пространством, которое называется фактор – пространством, причем роль нулевого элемента играет линейное многообразие .

 

 







Дата добавления: 2015-08-29; просмотров: 573. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия