Изоморфизм линейных пространств
Определение 9. Линейные пространства и называются изоморфными, если между их элементами можно установить взаимно однозначное соответствие, причем из того, что и , следует, что и . Иначе говоря, это взаимно однозначное соответствие сохраняет алгебраические операции. Далее покажем, что всякое - мерное линейное действительное пространство изоморфно арифметическому пространству . Для этого обозначим через базис пространства , который существует в силу теоремы 1, и разложим произвольный элемент по базису: . Соотнося элементу вектор с компонентами , получим взаимно однозначное соответствие между и . Построенное соответствие является линейным изоморфизмом, поскольку, если и , то .
1.6. Фактор – пространства Пусть - линейное пространство и - некоторое линейное многообразие. Два элемента и из назовем эквивалентными, если их разность принадлежит . Это отношение является рефлексивным, симметричным и транзитивным, т.е. определяет разбиение всех на классы. Совокупность всех таких классов называется фактор - пространством по и обозначается . Если произвольный элемент из класса , то всякий другой элемент из представим в виде , где . В множестве всех классов можно ввести алгебраические операции. Пусть и два класса из . Выберем в каждом классе по представителю, например и соответственно, и назовем суммой классов и тот класс , который содержит элемент , а произведением класса на число тот класс, который содержит элемент . Это определение, как легко проверить, не зависит от выбора элементов и - представителей классов и . Введенные операции удовлетворяют аксиомам линейного пространства. Поэтому множество становится линейным пространством, которое называется фактор – пространством, причем роль нулевого элемента играет линейное многообразие .
|