Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное многообразие. Линейные оболочки





Определение 7. Непустое подмножество линейного пространства называется линейным многообразием, если из , следует, что .

Покажем, что линейное многообразие само является линейным пространством. Аксиомы 1,2, а также 5-8 выполняются, поскольку они выполняются для всех элементов пространства . Остается проверить аксиомы 3,4.

Возьмем ; поскольку , то нулевой элемент принадлежит .

Теперь возьмем ; поскольку есть элемент, противоположный элементу , то подмножество вместе с каждым элементом содержит и противоположный элемент. Следовательно, выполнены все аксиомы линейного пространства. Приведем примеры линейных многообразий.

Пример 1. Нулевой элемент пространства образует наименьшее, возможное линейное многообразие пространства .

Пример 2. Все пространство - наибольшее, возможное линейное многообразие пространства .

Пример 3. Пусть - линейное пространство и - его ненулевой элемент. Элементы вида , где пробегает все числа, образует линейное многообразие.

Пример 4. Множество всех многочленов образует линейное многообразие в линейном пространстве непрерывных функций.

Пример 5. Пространство является линейным многообразием в линейном пространстве ограниченных последовательностей.

Определение 8. Пусть дано некоторое подмножество линейного пространства . Линейной оболочкой называется совокупность всевозможных линейных комбинаций, каждая из которых составлена из конечного числа элементов, принадлежащих . Линейную оболочку множества будем обозначать через .

Покажем, что линейная оболочка является линейным многообразием. В самом деле, если и принадлежат , то

, , .

Тогда

, ,

т.е. сумма двух элементов и произведение элемента на число являются линейными комбинациями элементов из множества . Следовательно, -линейное многообразие.

С другой стороны, всякое линейное многообразие, содержащее элементы множества , содержит и все линейные комбинации элементов из .

Следовательно, линейная оболочка множества есть наименьшее линейное многообразие, содержащее .

 







Дата добавления: 2015-08-29; просмотров: 1862. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия