Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 5 Случайные величины





 

Случайной величиной называют величину, которая в результате испытания примет одно и только одно из своих возможных значений, наперед неизвестное и зависящее от ряда причин.

Например: 1) число появлений герба при трех бросаниях монеты: 0, 1, 2, 3;

2) число покупателей магазина: 0, 1, 2, 3, …

Дискретной (ДСВ) называют случайную величину, которая принимает отдельные изолированные значения с определенной вероятностью.

Законом распределения дискретной случайной величины называется соответствие между ее возможными значениями и их вероятностями:

Х х 1 х 2 х n
Р p1 p2 pn

.

Часто для описания дискретной случайной величины достаточно знать ее числовые характеристики: математическое ожидание М (Х), дисперсию D (Х) и среднее квадратическое отклонение .

Математическим ожиданием ДСВ называется сумма произведений всех её возможных значений на соответствующие вероятности:

Математическое ожидание может принимать любые значения и характеризует среднее значение ДСВ.

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной равно самой постоянной

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания

Свойство 3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий

Свойство 4. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий

Замечание. Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.

Дисперсией дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: .

Для вычисления удобна формула: – математическое ожидание квадрата случайной величины минус квадрат математического ожидания или .

Дисперсия характеризует рассеяние значений случайной величины около математического ожидания и может быть только положительной.

Средним квадратическим отклонением называется корень квадратный из дисперсии .

Среднее квадратическое отклонение также характеризует рассеяние значений случайной величины около математического ожидания, но его размерность совпадает с размерностью самой случайной величины Х.

.

Пример 1. Дискретная случайная величина задана законом распределения.

Х        
Р 0,3 0,1 0,2 0,4

Найти числовые характеристики

Решение. Проверим, что данная таблица является законом распределения:

.

Найдем числовые характеристики. Математическое ожидание равно:

Дисперсия равна:

Cреднее квадратическое отклонение равно: .

 

Непрерывной случайной величиной (НСВ) называется случайная величина, которая принимает все значения из некоторого конечного или бесконечного промежутка, при этом число ее возможных значений бесконечно.

Непрерывная случайная величина задается функцией распределения вероятностей или функцией плотности распределения вероятностей.

Функцией распределения вероятностей (интегральной функцией) называется функция F (x), определяющая вероятность того, что случайная величина в результате испытаний примет значения, меньшие некоторого значения х, то есть .

Рассмотрим некоторые свойства функции распределения.

Свойство 1. Значения функции распределения принадлежат отрезку , то есть

Свойство 2. Функция распределения – неубывающая функция, то есть при

Свойство 3. Вероятность того, что НСВ примет значение, заключенное в интервале , равна приращению функции распределения на этом интервале, то есть .

 

Плотностью распределения вероятностей НСВ называется функция f (x), равная первой производной от функции распределения F (x):

Рассмотрим свойства функции плотности.

Свойство 1. Плотность распределения вероятностей есть неотрицательная функция

Свойство 2. Вероятность того, что НСВ примет значение, заключенное в интервале , равна определенному интегралу от функции плотности на этом интервале: .

 

Непрерывная случайная величина может быть охарактеризована ее числовыми характеристиками.

Математическое ожидание НСВ вычисляется по формуле

.

Дисперсия НСВ вычисляется по формуле

.

Среднее квадратическое отклонение НСВ есть корень квадратный из дисперсии

.

Пример 2. Непрерывная случайная величина задана функцией распределения вероятностей

Найти числовые характеристики и вероятность того, что НСВ попадет в интервал .

Найдем функцию плотности распределения вероятностей

Тогда математическое ожидание равно:

Найдем дисперсию:

Среднее квадратическое отклонение равно:

.

Вероятность того, что НСВ попадет в интервал (1; 1,5) найдем следующим образом:

 

 







Дата добавления: 2015-09-19; просмотров: 669. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия