Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача №5. Точка движется в плоскости по закону: (см), (см)





Точка движется в плоскости по закону: (см), (см). Найти уравнение траектории. В момент времени 1с определить скорость точки, ускорение и их составляющие на координатные и естественные оси, а также радиус кривизны траектории для соответствующего момента времени.

Решение.

1) Найдём уравнение траектории.

Для этого из уравнений движения исключаем параметр . Второе уравнение запишем в виде и найдём разность . Это и есть уравнение траектории (уравнение прямой). Следовательно, движение точки прямолинейное. Так как время изменяется в интервале < ∞, то координаты точки изменяются в интервалах 2 см > – ∞, 3 см > – ∞. Начальное положение точки при определяется координатами = 2 см; = 3 см; (2;3). Для момента времени 2 − 3 − 6 = − 7 см; 3 − 1,5 − 3 =

= 1,5 см; (–7;–1,5). Прямую строим по двум точкам: и (рис.8).

2) Определим скорость точки.

Сначала найдём проекции скорости на оси :

;

.

В момент времени 1с: см/с, = –7,5 см/с. Модуль скорости 16,77 см/с.

 
 

На рис.8 от точки проведём оси , и на них отложим , , по которым построим вектор скорости, направленный по касательной к траектории. В случае прямолинейного движения точки вектор скорости направлен вдоль траектории.

3) Определим ускорение точки.

Проекции ускорения на оси :

12 см/с2, 6 см/с2.

Модуль ускорения точки 13,42 см/с2.

На рис.6 от точки проведём оси , и отложим на них , . Вектор ускорения построим по составляющим , .

Обратим внимание, что единицы измерений координат , проекций скорости , и ускорения , отличаются. Поэтому при построении траектории, векторов скорости и ускорения могут быть назначены разные единицы масштаба.

4) Определим составляющие ускорения на касательную и главную нормаль. Найдём радиус кривизны траектории.

Направим вдоль вектора скорости касательную, а перпендикулярно касательной – главную нормаль. На эти оси спроектируем конец вектора ускорения. Таким образом, вектор ускорения раскладывается на касательную и нормальную составляющие: , а модуль ускорения равен .

Касательное ускорение вычисляется по формуле:

. Тогда можно определить нормальное ускорение . Радиус кривизны траектории .

В случае прямолинейного движения точки и, следовательно, , . Радиус кривизны траектории .

Ответ: уравнение траектории: ; 15 см/с, 7,5 см/с, 16,77 см/с; 12 см/с2, 6 см/с2, =13,42 см/с2, ; . Поскольку > 0, то движение точки будет ускоренным – на рисунке векторы скорости и касательного ускорения имеют одинаковые направления. Касательное ускорение точки постоянное (не зависит от времени), следовательно, движение точки будет равноускоренным.







Дата добавления: 2015-09-19; просмотров: 1138. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия