Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача №5. Точка движется в плоскости по закону: (см), (см)





Точка движется в плоскости по закону: (см), (см). Найти уравнение траектории. В момент времени 1с определить скорость точки, ускорение и их составляющие на координатные и естественные оси, а также радиус кривизны траектории для соответствующего момента времени.

Решение.

1) Найдём уравнение траектории.

Для этого из уравнений движения исключаем параметр . Второе уравнение запишем в виде и найдём разность . Это и есть уравнение траектории (уравнение прямой). Следовательно, движение точки прямолинейное. Так как время изменяется в интервале < ∞, то координаты точки изменяются в интервалах 2 см > – ∞, 3 см > – ∞. Начальное положение точки при определяется координатами = 2 см; = 3 см; (2;3). Для момента времени 2 − 3 − 6 = − 7 см; 3 − 1,5 − 3 =

= 1,5 см; (–7;–1,5). Прямую строим по двум точкам: и (рис.8).

2) Определим скорость точки.

Сначала найдём проекции скорости на оси :

;

.

В момент времени 1с: см/с, = –7,5 см/с. Модуль скорости 16,77 см/с.

 
 

На рис.8 от точки проведём оси , и на них отложим , , по которым построим вектор скорости, направленный по касательной к траектории. В случае прямолинейного движения точки вектор скорости направлен вдоль траектории.

3) Определим ускорение точки.

Проекции ускорения на оси :

12 см/с2, 6 см/с2.

Модуль ускорения точки 13,42 см/с2.

На рис.6 от точки проведём оси , и отложим на них , . Вектор ускорения построим по составляющим , .

Обратим внимание, что единицы измерений координат , проекций скорости , и ускорения , отличаются. Поэтому при построении траектории, векторов скорости и ускорения могут быть назначены разные единицы масштаба.

4) Определим составляющие ускорения на касательную и главную нормаль. Найдём радиус кривизны траектории.

Направим вдоль вектора скорости касательную, а перпендикулярно касательной – главную нормаль. На эти оси спроектируем конец вектора ускорения. Таким образом, вектор ускорения раскладывается на касательную и нормальную составляющие: , а модуль ускорения равен .

Касательное ускорение вычисляется по формуле:

. Тогда можно определить нормальное ускорение . Радиус кривизны траектории .

В случае прямолинейного движения точки и, следовательно, , . Радиус кривизны траектории .

Ответ: уравнение траектории: ; 15 см/с, 7,5 см/с, 16,77 см/с; 12 см/с2, 6 см/с2, =13,42 см/с2, ; . Поскольку > 0, то движение точки будет ускоренным – на рисунке векторы скорости и касательного ускорения имеют одинаковые направления. Касательное ускорение точки постоянное (не зависит от времени), следовательно, движение точки будет равноускоренным.







Дата добавления: 2015-09-19; просмотров: 1138. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия