Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА





3.1. Момент силы и момент импульса

 

Различают момент силы относительно точки (точка О на рис. 3), называемая неподвижным началом или полюсом, и момент силы относительно оси.

Моментом силы относительно точки называется векторное произведение радиус-вектора , проведенного из этой точки (рис. 3), в точку приложения силы на эту силу:

[ ]

 

 


Модуль вектора может рассчитываться также как произведение модуля силы на плечо (рис. 3):

М = F

Под плечом силы понимается кратчайшее расстояние между полюсом и линией действия этой силы.

Моментом силы относительно произвольной оси называется проекция момента силы относительно точки, находящейся на оси, на эту ось.

Моментом импульса материальной точки относительно неподвижного начала называется векторное произведение радиус-вектора , соединяющего неподвижное начало и движущуюся материальную точку, на импульс этой точки:

= [ ]

Вектор перпендикулярен плоскости, в которой находятся векторы и . Направление вектора определяется направлением векторного произведения векторов и .

Модуль вектора момента импульса равен произведению модулей векторов и на синус угла между ними:

L = rPsin α

Моментом импульса относительно произвольной оси называется проекция момента импульса относительно точки, находящейся на оси, на эту ось.

Производная по времени t момента импульса материальной точки равна моменту сил , действующих на такую точку

Аналогичное утверждение справедливо и для системы тел или материальных точек, однако здесь под понимается момент импульса системы

,

а под - момент внешних сил,

,

действующих на такую систему:

 

3.2. Момент инерции твердого тела относительно данной оси:

,

 

где m i и r i - соответственно массы и расстояния материальных точек до оси вращения.

3.3. Моменты инерции относительно оси Z0, проходящей через центр масс перпендикулярно плоскости основания:

сплошного цилиндра (диска) радиусом R и массой m

Jz0 = mR2;

полого цилиндра массой m, внутренним радиусом R1 и внешним R2

Jz0 = ;

тонкостенного полого цилиндра (обруча) массой m радиусами R1 R2 R

Jz0 = mR2.

Момент инерции шара массой m и радиусом R относительно оси Z0, проходящей через центр масс

Jz0 = mR2

Момент инерции тонкого стержня массой m и длиной относительно оси Z0, проходящей через центр масс стержня перпендикулярно его оси

Jz0 = m

 

3.4. Теорема Штейнера.

Момент инерции тела I относительно любой оси равен моменту его инерции Ic относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния d между осями:

.

3.5. Основное уравнение динамики вращательного движения.

Результирующий момент внешних сил относительно оси вращения z равен произведению момента инерции твердого тела относительно этой оси на угловое ускорение:

.

3.6. Момент импульса тела относительно оси вращения:

,

где I z – момент инерции тела относительно оси вращения.

3.7. Закон сохранения момента импульса.

· Момент импульса в замкнутой системе тел сохраняется:

,

· в проекции на ось вращения z:

,

где - момент импульса i- го тела относительно оси вращения, т.е. проекция момента импульса i- го тела на ось вращения системы.

3.8. Кинетическая энергия тела, вращающегося относительно неподвижной оси:

.

3.9. Работа при повороте твердого тела относительно произвольной неподвижной оси z на некоторый угол φ под действием внешних сил Мz

А =

 

3.10. Кинетическая энергия при плоском движении твёрдого тела:

,

где - скорость центра масс тела, - момент инерции тела относительно на оси, проходящий через центр масс тела.

 







Дата добавления: 2015-09-19; просмотров: 525. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия