Блэк джек
Обсуждение игры в блэкджек в целом смотрите Thorp (1962, 1966); Wong (1994) и Griffin (1995). Критерий Келли был применен для блэкджека Торпом (1962). Анализ более сложен, чем при бросках монеты, потому что выплаты здесь не просто один к одному. В частности дисперсия обычно больше 1, и доля Келли стремится быть меньше, чем при подбрасывании монеты с тем же самым ожиданием. Кроме того, распределение различных выплат зависит от преимуществ игрока. Например, частоты сплитов, удвоений и блэкджеков меняются по мере того, как изменяется преимущество. Задавая вероятности различных выплат в соответствии с их ожиданиями, и решая уравнения Келли на компьютере, может быть найдена стратегия, близкая к оптимальной с любой степенью точности. Существуют некоторые заслуживающие внимания концептуальные тонкости. Чтобы показать их, мы упростим нашу модель до модели броска монеты. При каждой попытке мы имеем "благоприятную ситуацию" с вероятностью 0.5 при выигрыше или потере X единиц на единицу ставки, так что P (X= 1) =0.51, P (X=-1)=0.49,и с вероятностью 0.5 неблагоприятную ситуацию с выигрышем или потерей Y на единицу ставки, так что P (Y= 1)= 0.49 и P (Y=-1) = 0.51. Прежде, чем ставить, мы знаем, применяется X или Y. Предположим, игрок должен делать маленькие "ждущие" ставки в неблагоприятных ситуациях, чтобы позднее иметь возможность использовать благоприятные ситуации. На них он разместит "большие" ставки. Мы рассмотрим два случая. Случай 1. Ставим fo в неблагоприятных ситуациях и находим оптимальное f * для благоприятных ситуаций. Мы имеем Так как второе выражение в (5.1) постоянно, f максимизирует g(f), если максимизировано первое выражение, так что f* = pi - qi = 0.02, как обычно. Легко проверить что на всем спектре благоприятных ситуаций работает тот же самый рецепт, f*i =pi - qi для i -той ситуации. Кроме этого, в реальном блэкджеке значение f*i было бы пересмотрено в меньшую сторону отчасти из-за большей дисперсии. С дополнительным ограничением типа fi ≤ kfo, где k обычно интегральный множитель для fo выражающий спред ставки, принятый благоразумным игроком, решением будет просто: fi ≤ min (f*i kfo). Любопытно, внешне подобная формулировка проблемы ставок ведет к довольно разнящимся результатам. Случай 2. Ставка f в благоприятных ситуациях и af в неблагоприятных ситуациях, 0 ≤ a ≤ 1. Теперь размеры ставки в этих двух ситуациях связаны, анализ и результаты становятся более сложными. Мы имеем норму роста Келли Если мы выбираем=0 (никаких ставок в неблагоприятных ситуациях), то максимальная величина g(f) будет около f* =0.02, обычная доля Келли. Если мы делаем "ожидающие ставки" величиной a > 0, то это сместит значение f* вниз, возможно, даже до 0. Ожидаемый рост, деленный на ожидаемую ставку равен 0.02 (1 - a) / (1 + a), a ≥ 0. Если a =0, мы получим 0.02, как и ожидалось. Если а=1, мы получаем 0, как ожидалось: это - справедливая игра, и доля Келли будет f* =0. При увеличении а от 0 до 1 доля Келли (оптимальная) f* уменьшается от 0.02 до 0. Таким образом, доля Келли для благоприятных ситуаций меньше в этом случае, когда ставки при неблагоприятных ситуациях уменьшают общую выгодность игры. Arnold Snyder обратил мое внимание на тот факт, что Winston Yamashita (также) сделал это наблюдение (18 марта 1997) на страницах вебсайта Станфорда Вонга (Stanford Wong). В этом примере мы находим новое значение f* для данной величины a, 0 < a < 1, решая g' (f) =0. Значение a=1/3, к примеру, соответствует ставке 1/3 единицы при Y и 1 единице при X, диапазон ставок от 3 до 1. Полное ожидание будет 0.01. Вычисления дают f* =0.012001. Таблица 5.1 показывает, как f* меняется в зависимости от a. Таблица 5.1 Изменения f* от a Чтобы понять, почему Случай 1 и Случай 2 имеет различные f*, взглянем сначала на уравнение (5.1). Часть g(f) соответствующая неблагоприятным ситуациям, фиксирована, когда фиксировано f0. Только та часть g(f), которая соответствует благоприятным ситуациям, меняется с изменением f. Таким образом, мы максимизируем g(f) только для благоприятных ситуаций. Независимо от значения f g(f) уменьшается на фиксированное количество части содержащей f0. С другой стороны, в уравнении (5.2) обе части g(f) изменяются при изменении f, потому что доля af, используемая для неблагоприятных ситуаций, находится в пропорциональной зависимости скоэффициентом а от доли f, используемой в благоприятных ситуациях. Теперь первый член, для благоприятных ситуаций, имеет максимум на f= 0.02, и приблизительно "плоский" около. Но второй элемент, для неблагоприятных ситуаций, является отрицательным и уменьшается довольно быстро при f =0.02. Поэтому, когда мы несколько уменьшаем f, этот член несколько увеличивается, в то время как первый член уменьшается лишь очень незначительно. Здесь лежит чистая выгода, так что мы находим f * < 0.02. Чем больше a, тем сильнее эффект этого слагаемого, тем сильнее мы должны уменьшить f чтобы получить f *, что ясно показано в Таблице 5.1. Когда существует спектр благоприятных ситуаций, решение более сложно и может быть найдено через стандартные многомерных методов оптимизации. Более сложный Случай 2 соответствует тому, что серьезному игроку в блэкджек, вероятно, нужно будет делать практически. Он должен будет ограничить размер своей текущей максимальной ставки до нескольких текущих минимальных ставок. По мере того, как его капитал будет расти или уменьшаться, соответственно пропорционально увеличиваются или уменьшаются и размеры ставки.
|