Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка истинности тождеств при помощи диаграмм Эйлера-Венна




Все законы алгебры множеств можно наглядно представить и доказать, используя диаграммы Эйлера-Венна. Для этого необходимо:

1. Начертить соответствующую диаграмму и заштриховать все множества, стоящие в левой части равенства.

2. Начертить другую диаграмму и сделать то же для правой части равенства.

3. Данное тождество истинно тогда и только тогда, когда на обеих диаграммах заштрихована одна и та же область.

Замечание 3.1.Два пересекающихся круга делят всё универсальное множество на четыре области (см. рис.3.1)

 
 


1. А Ç В;

2. А Ç ;

3. Ç В;

4. Ç .

 

Рис.3.1

Замечание 3.2. Три пересекающихся круга делят всё универсальное множество на восемь областей (см. рис.3.2):

 

I. А Ç В Ç С;

II. А Ç В Ç ;

III. А Ç Ç С;

IV. А Ç Ç ;

V.

Рис.3.2
Ç В Ç С;

VI. Ç В Ç ;

VII. Ç Ç С;

VIII. Ç Ç .

Замечание 3.2. При записи условий различных примеров часто используются обозначения:

Þ - из … следует…;

Û - тогда и только тогда, когда… .

Задача 3.1. Упростить выражения алгебры множеств:

1) ;

2) ;

3) .

Решение.

1) ;

2)

3)

Задача 3.2. Доказать тождества:

1) (АÈВ)\В = А\В;

2) АÇ(ВÈС) = А\(А\В)Ç(А\С).

Решение.

1)

2)

 

Задача 3.3. Доказать следующие соотношения двумя способами: с помощью диаграмм и с помощью определения равенства множеств.

а)

б) AÇ(BÈC) = (AÇB)È(AÇC);

в)

г)

Решение.

а)

1. Доказательство с помощью диаграммы:

2. Доказательство с помощью определения равенства множеств.

По определению, множества Х и Y равны, если одновременно выполнены соотношения: XÍY и YÍX.

Сначала покажем, что . Пусть х – произвольный элемент множества , то есть хÎ . Это означает, что хÎU и хÏ . Отсюда вытекает, что хÏА или хÏВ. Если хÏА, то тогда хÎĀ, а значит, . Если же хÏВ, то , а значит, . Таким образом, всякий элемент множества . . есть также элементом множества То есть

Теперь докажем обратное, то есть, что . Пусть . Если хÎĀ, то хÎU и хÏА, а значит, хÏАÇВ. Отсюда следует, что . Если же , то хÎU и хÏВ. Значит, хÏАÇВ, то есть . Отсюда следует, что всякий элемент множества является также элементом множества , то есть .

Значит, , что и требовалось доказать.

б) AÇ(BÈC) = (AÇB)È(AÇC);

1. Доказательство с помощью диаграммы:

2. Доказательство с помощью определения равенства множеств.

Пусть хÎАÇ(ВÈС). Тогда хÎА и хÎВÈС. Если хÎВ, то хÎАÇВ, что не противоречит сказанному, а значит, хÎ(АÇВ)È(АÇС). Если же хÎС, то хÎАÇС. Следовательно, хÎ(AÇB)È(AÇC). Итак, доказано, что AÇ(BÈC) Í (AÇB)È(AÇC.

Пусть теперь хÎ (AÇB)È(AÇC). Если хÎАÇВ, то хÎА и хÎВ. Отсюда следует, что хÎА и хÎВÈС, то есть хÎАÇ(ВÈС). Если же хÎАÇС, то хÎА и хÎС. Отсюда вытекает, что хÎА и хÎВÈС, то есть хÎАÇ(ВÈС). Таким образом, (AÇB)È(AÇC)Í AÇ(BÈC). Следовательно, AÇ(BÈC) = (AÇB)È(AÇC). Что и требовалось доказать.

в) Пересечение множеств А и В есть подмножеством множества С тогда и только тогда, когда множество А является подмножеством объединения множеств не-В и С.

При доказательстве достаточности мы получили, что АÇВ=Æ. Очевидно, что ÆÌС, поэтому соотношение доказано. При доказательстве был рассмотрен самый общий случай. Однако здесь возможны ещё некоторые варианты при построении диаграмм. Например, случай равенства АÇВ=С либо , случай пустых множества и так далее. Очевидно, что все возможные варианты учесть бывает затруднительно. Поэтому считается, что доказательство соотношений с помощью диаграмм не всегда является корректным.

2. Доказательство с помощью определения равенства множеств.

Необходимость. Пусть АÇВÍС и элемент хÎА. Покажем, что в этом случае элемент множества А будет являться также и элементом множества .

Рассмотрим два случая: хÎВ или .

Если хÎВ, то хÎАÇВÍС, то есть хÎС, и, как следствие этого, .

Если же , то и . Необходимость доказана.

Пусть теперь и хÎАÇВ. Покажем, что элемент х также будет элементом множества С.

Если хÎАÇВ, тогда хÎА и хÎВ. Поскольку , значит хÎС. Достаточность доказана.

г) Если множество А является подмножеством множества В, то тогда множество будет подмножеством множества Ā.

1. Доказательство с помощью диаграммы:

2. Доказательство с помощью определения равенства множеств.

Пусть АÍВ. Рассмотрим элемент хÏВ (или ). Аналогично: хÏА (или хÎĀ). То есть всякий элемент множества есть также элементом множества Ā. А это может быть в случае, если . Что и требовалось доказать.

 

Задача 3.4. Выразить символически указанные области и упростить полученные выражения.

Решение.

1. Искомая область состоит из двух изолированных частей. Условно назовём их верхней и нижней. Множество, которое они изображают, можно описать так:

М = {xôxÎA и хÎВ и хÏС или хÎС и хÏА и хÏВ}.

Из определения операций над множествами получим:

М = ((АÇВ)\С)È(С\А\В).

Запишем это выражение с помощью основных операций – дополнения, объединения и пересечения:

.

Упростить это выражения нельзя, поскольку имеем по одному вхождению каждого символа. Это и есть простейший вид данной формулы.

2. Данную область можно рассматривать как объединение множеств А\В\С и АÇВÇС. По определению M = {xô xÎA и xÏВ и хÏС или хÎА и хÎВ и хÎС}. Упростим:

Задачи для самостоятельного решения.

1. Упростить:

а)

б) (А¸В)È(АÇВ); (ответ АÈВ);

в) (ответ V).

2. Доказать с помощью диаграмм, законов алгебры множеств и определения равенства множеств:

а) (АÈВ)\В = А\В;

б) АÇ(ВÈС) = А\(А\В)Ç(А\С);

в) АÈВ = АÇВ Þ А=В;

г) А\В = Æ Û АÇВ = А.

3.Выяснить, существует ли множество Х, удовлетворяющее при любом А равенству:

а) АÈХ = А; (ответ Æ);

б) АÇХ = А; (ответ U).







Дата добавления: 2015-09-18; просмотров: 4416. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.009 сек.) русская версия | украинская версия