Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кеңістіктегі түзулер. Кеңістікте түзу мен жазықтықтың өзара орналасуы





 

Кеңістікте түзуді екі жазықтықтың қиылысу сызығы деп қарауға болады, сондықтан осы екі жазықтықтың теңдеулерінен тұратын жүйені түзудің кеңістіктегі теңдеуі есебінде қарастыруға болады.

(1) жүйені теңдеудің жалпы теңдеуі деп атайды. Нақты есептерді шешкен кездерде түзудің теңдеуін (1) қолдану кейде едәуір ыңғайсыздық тудырады. Сондықтан ондай кездерде түзудің басқа түрде берілген теңдеулерін пайдаланады.

Бізге L түзуі мен нольден ерекше a {l,m,n} векторы берілсін, бұл вектор түзуде жатсын, немесе оған параллель болсын. L түзуінің бойынан M(x1,y1,z1) нүктесін алалық. Онда қарастырып отырған түзудің теңдеуін мына түрде жазуға болады:

Бұл теңдеуді түзудің канондық теңдеуі деп атайды.

t параметрін енгізу арқылы канондық теңдеуден түзудің параметрлік теңдеуін алуға болады:

Бізге екі түзу өздерінің канондық теңдеулері арқылы берілсін:

Осы екі түзу құрап тұрған бұрыштардың бірі a1 {l1,m1,n1}, a2 {l2,m2,n2} векторларының арасындағы ϕ =(a 1^ a 2) бұрышқа тең болады. Ол бұрышты мына формула арқылы есептеуге болады:

 

Кеңістіктегі екі түзудің сәйкес параллель немесе перпендикуляр болу белгісі мынадай болады:

Енді түзуі мен Ax+By+Cz+D=0 жазықтығының өзара орналасуын қарастыралық. Олардың арасындағы бұрыш былай анықталады:

Түзу мен жазықтықтың сәйкес параллельдік, перпендикулярлық белгілері мынандай болады:

 







Дата добавления: 2015-09-18; просмотров: 25767. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия