Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кеңістіктегі түзулер. Кеңістікте түзу мен жазықтықтың өзара орналасуы






 

Кеңістікте түзуді екі жазықтықтың қиылысу сызығы деп қарауға болады, сондықтан осы екі жазықтықтың теңдеулерінен тұратын жүйені түзудің кеңістіктегі теңдеуі есебінде қарастыруға болады.

(1) жүйені теңдеудің жалпы теңдеуі деп атайды. Нақты есептерді шешкен кездерде түзудің теңдеуін (1) қолдану кейде едәуір ыңғайсыздық тудырады. Сондықтан ондай кездерде түзудің басқа түрде берілген теңдеулерін пайдаланады.

Бізге L түзуі мен нольден ерекше a{l,m,n} векторы берілсін, бұл вектор түзуде жатсын, немесе оған параллель болсын. L түзуінің бойынан M(x1,y1,z1) нүктесін алалық. Онда қарастырып отырған түзудің теңдеуін мына түрде жазуға болады:

Бұл теңдеуді түзудің канондық теңдеуі деп атайды.

t параметрін енгізу арқылы канондық теңдеуден түзудің параметрлік теңдеуін алуға болады:

Бізге екі түзу өздерінің канондық теңдеулері арқылы берілсін:

Осы екі түзу құрап тұрған бұрыштардың бірі a1{l1,m1,n1}, a2{l2,m2,n2} векторларының арасындағы ϕ=(a1^a2) бұрышқа тең болады. Ол бұрышты мына формула арқылы есептеуге болады:

 

Кеңістіктегі екі түзудің сәйкес параллель немесе перпендикуляр болу белгісі мынадай болады:

Енді түзуі мен Ax+By+Cz+D=0 жазықтығының өзара орналасуын қарастыралық. Олардың арасындағы бұрыш былай анықталады:

Түзу мен жазықтықтың сәйкес параллельдік, перпендикулярлық белгілері мынандай болады:

 







Дата добавления: 2015-09-18; просмотров: 23573. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2022 год . (0.018 сек.) русская версия | украинская версия