Студопедия — Кеңістіктегі түзулер. Кеңістікте түзу мен жазықтықтың өзара орналасуы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кеңістіктегі түзулер. Кеңістікте түзу мен жазықтықтың өзара орналасуы






 

Кеңістікте түзуді екі жазықтықтың қиылысу сызығы деп қарауға болады, сондықтан осы екі жазықтықтың теңдеулерінен тұратын жүйені түзудің кеңістіктегі теңдеуі есебінде қарастыруға болады.

(1) жүйені теңдеудің жалпы теңдеуі деп атайды. Нақты есептерді шешкен кездерде түзудің теңдеуін (1) қолдану кейде едәуір ыңғайсыздық тудырады. Сондықтан ондай кездерде түзудің басқа түрде берілген теңдеулерін пайдаланады.

Бізге L түзуі мен нольден ерекше a {l,m,n} векторы берілсін, бұл вектор түзуде жатсын, немесе оған параллель болсын. L түзуінің бойынан M(x1,y1,z1) нүктесін алалық. Онда қарастырып отырған түзудің теңдеуін мына түрде жазуға болады:

Бұл теңдеуді түзудің канондық теңдеуі деп атайды.

t параметрін енгізу арқылы канондық теңдеуден түзудің параметрлік теңдеуін алуға болады:

Бізге екі түзу өздерінің канондық теңдеулері арқылы берілсін:

Осы екі түзу құрап тұрған бұрыштардың бірі a1 {l1,m1,n1}, a2 {l2,m2,n2} векторларының арасындағы ϕ =(a 1^ a 2) бұрышқа тең болады. Ол бұрышты мына формула арқылы есептеуге болады:

 

Кеңістіктегі екі түзудің сәйкес параллель немесе перпендикуляр болу белгісі мынадай болады:

Енді түзуі мен Ax+By+Cz+D=0 жазықтығының өзара орналасуын қарастыралық. Олардың арасындағы бұрыш былай анықталады:

Түзу мен жазықтықтың сәйкес параллельдік, перпендикулярлық белгілері мынандай болады:

 







Дата добавления: 2015-09-18; просмотров: 25548. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия