Функцияның үзіліссіздігі. Функцияның үзіліс нүктелерін классификациялау
Егер төмендегі шарттар орындалса, онда у=f(х) функциясы x0 нүктесінде үзіліссіз деп айтады: f(х) функциясы x0 нүктесінде және оның аймағында анықталған; x0 нүктесінде f(х) функциясының ақырлы шегі бар; x0 нүктесіндегі функцияның мәні осы нүктедегі функцияның шегіне тең болады, яғни Δx=x-x0 шамасын x0 нүктесінде аргументтің өсімшесі деп (бұдан мынаны аламыз x=x0+Δx), ал Δf(x0)=f(x0+Δx)-f(x0) шамасын x0 нүктесіндегі f(x) функцияның өсімшесі деп атаймыз. Осы терминдерді қолдансақ, функцияның үзіліссіздік шартын (2) былай жазуымызға болады: яғни функция қарастырып отырған нүктеде үзіліссіз болуы үшін оның осы нүктедегі ақырсыз аз өсімшесіне функцияның ақырсыз аз өсімшесі сәйкес келуі керек екен. Егер функция бір обылыстың кез-келген нүктесінде үзіліссіз болатын болса, онда функцияны осы обылыста үзіліссіз функция деп айтады. Үзіліссіз функциялардың қасиеттері: · Екі үзіліссіз функцияның қосындысы, көбейтіндісіьде үзіліссіз функция болады; · Егер бөлгіш болып тұрған функция нольге тең болмайтын болса, екі үзіліссіз функцияның бөліндісі де үзіліссіз функция болады; · Егер u=ϕ(x) функциясы x0 нүктесінде үзіліссіз болатын болса, ал y=f(u) функциясы u0=ϕ(x0) нүктесінде үзіліссіз функция болатын болса, онда y=f(ϕ(x)) күрделі функциясы x0 нүктесінде үзіліссіз функция болады; · Теорема 1 (Вейерштрасс). Егер кесіндіде берілген функция кесіндіде үзіліссіз болатын болса, онда ол осы кесіндіде шектелген функция болады. · Теорема 2 (Вейерштрасс). Егер кесіндіде берілген функция осы кесіндіде үзіліссіз болатын болса, онда ол осы кесіндіде өзінің ең үлкен және ең кіші мәндерін қабылдайды; · Теорема 3 (Больцано-Коши). Егер [a,b] кесіндісінде үзіліссіз болатын f(x) функция осы кесіндінің ұштарында әртүрлі таңбалы мәндер қабылдайтын болса, онда осы кесіyдінің ішінде жататын функция мәні нольге тең болатын ең болмағанда бір нүкте табылады.
|