Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциал





 

Бізге [a,b] аралығында дифференциалданатын (туындысы бар) y=f(x) функциясы берілсін. Оның туындысы төмендегі теңдікпен анықталады:

Δx→0 болған кезде Δy/Δx қатынасы f’(x) санына ұмтылады, сондықтан ол саннан ақырсыз аз шамаға ауытқып тұрады:

мұнда Δx→0 болғанда α→0 болады.

Енді соңғы теңдікті Δx шамасына көбейтсек мынаны аламыз:

Жалпы жағдайда f’(x)≠0 деп есептеуге болады. x– тің тұрақты мәнінде f’(x)Δx шамасы Δx пен салыстырғанда бірінші ретті ақырсыз аз шама болады. Ал αΔx шамасының ақырсыз аздығы Δx пен салыстырғанда бірінші реттен жоғары болады, себебі:

Сонымен функция өсімшесі Δy екі қосылғышқа жіктеледі екен (f’(x)≠0 болған кезде). Оның біріншісі f’(x)Δx Δx- пен салыстырғанда бірінші ретті ақырсыз аз шама, ал екіншінің ақырсыз аздығы одан жоғары болады. f’(x)Δx шамасын y=f(x) функциясының дифференциалы деп атап dy деп белгілейді:

dy=f’(x)Δx. (2)

Енді осы анықтамамызды қолданып y=x функциясының дифференциалын есептелік: y’=(x)’=1, сондықтан dy=dx=Δx яғни dx=Δx. Сонымен соңғы теңдікті тәуелсіз айнымалының дифференциалы деп қарастыруымызға болады екен, сондықтан (2) теңдікті былай жазуымызға болады екен: dy=f’(x)dx.

Соңғы өрнектен мынаны алуға болады:

Яғни туындыны тәуелді айнымалының дифференциалының тәуелсіз айнымалының дифференциалына қатынасы ретінде қарастыруымызға болады екен.

Енді (1) өрнекті (2) өрнекті ескере отырып былай жазуымызға болады екен:

Δy=dy+αΔx.

Сонымен функция өсімшесінің функция дифференциалынан айырмашылығы Δx шамасымен салыстырғанда бірінші реттен жоғары ақырсыз аз шама болады екен. Егер f’(x)≠0 болса, онда αΔx шамасы dy шамасымен салыстырғанда жоғары ретті ақырсыз аз шама болады екен. Сондықтан:

Жуықтап есептеу кезінде осы айтылғандарды ескере отырып төмендегі жуық теңдікті қолдануға болады екен:

Δy≈dy.

Соңғы теңдікті басқаша қылып ашып жазалық:

f(x+Δx)-f(x)≈f’(x)Δx.

Осындай жуық теңсіздіктерді қолдану есептеу жұмыстарының көлемін азайтады.

 







Дата добавления: 2015-09-18; просмотров: 2830. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия