Студопедия — Туындының геометриялық мағынасы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Туындының геометриялық мағынасы






Қисықтың берілген нүктеде жанамасы деген ұғымды анықталық. Бізге бір қисық және ол қисықта жатқан M0 нүктесі берілсін. Осы қисықтың бойынан бұл нүктеден басқа тағы да M1 бір нүктесін алып осы екі нүктені қосатын түзу жүргізсек ол түзу қисықтың M0M1 қиюшысы болады. Енді осы M1 нүктесі біртіндеп қисықты бойлай M0 нүктесіне жақындаса, қиюшы M0 нүктесін айнала бұрылып (мысалы M0M’1, M0M”1 жағдайларына көшіп) бір M0T түзуіне жақындауы мүмкін. Егер осындай M0T түзуі табылса, оны берілген қисықтың M0 нүктесіндегі жанамасы деп айтамыз.

Енді біз f(x) функциясын өзін және оның декарттық координаталар системасындағы графигін қарастыралық. График жалпы жағдайда қисық сызық болады. Аргумент мәні x болғанда функция мәні y=f(x) болсын. Сонда осы мәндер қисық бойында жатқан M0(x,y) нүктесінің координаталары болады. Енді аргументке Δx өсімшесін берелік. Аргументтің жаңа мәніне функцияның жаңа мәні y+Δy=f(x+Δx) сәйкес келеді. Осы екі жаңа мәнге сәйкес келетін нүкте M1(x+Δx,y+Δy) болады. Енді қиюшысын M0M1 жүргізелік те оның Ox осінің оң бағытымен жасайтын бұрышын ϕ; деп белгілейік. Енді Δy/Δx қатынасын құралық. Суреттен

болатынын аңғарамыз.

Енді Δx нольге ұмтылатын болса, онда M1 нүктесі қисықты бойлай жылжып M0 нүктесіне жақындайды. M0M1 қиюшысы M0 нүктесін айнала бұрылады да жанамаға ұмтылады. Қиюшының абсцисса осімен жасайтын ϕ; бұрышы да Δx өзгеруіне тәуелді түрде өзгеріп отырады да Δx нольге ұмтылған кезде бір α; бұрышына ұмтылады. Ал бұл бұрыш жанаманың абсцисса осімен жасайтын бұрышы. Сондықтан жанаманың бұрыштық коэффициенті мына теңдікті қанағаттандырады:

Сондықтан

яғни f’(x) туындысы аргументтің берілген x мәнінде f(x) функциясының графигінің M0(x,y) нүктесіндегі жанаманың Ox осінің оң бағытымен жасайтын бұрышының тангенсіне тең болады екен, басқаша айтқанда жанаманың бұрыштық коэффициентіне тең болады екен.

 

Дифференциалдау ережесі және элементарлық функциялар туындыларының таблицасы

 

тұрақты сан болсын, дифференциалданатын (туындылары бар) функциялар болсын. Онда төмендегі теңдіктер (дифференциалдау немесе туынды табу ережелері) орындалады:

1. C’=0;

2. (x)’=1;

3. (u±v)’=u’±v’;

4. (Cu)’=Cu’;

5. (uv)’=u’v+uv’;

6.

7.

8. егер y=f(u), u=ϕ(x), болса, яғни y=f(ϕ(x))– дифференциалданатын (туындысы бар) функциялардан құралған күрделі функция болатын болса, онда

9. егер y=f(x) дифференциалданатын (туындысы бар болатын) кері функциясы x=g(y) и g’(y)≠0 бар болса, онда

 

Туындының анықтамасын және жоғарыда келтірілген ережелерді қолдана отырып төмендегі элементарлық функциялар туындыларының таблицасын алуға болады:

 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

 







Дата добавления: 2015-09-18; просмотров: 5767. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия