Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Туындының анықтамасы





 

Бір аралықта (кесіндіде, интервалда) анықталған y=f(x) функциясы берілсін. Егер x нүктесінде аргумент Δx өсімше қабылдайтын болса, осы нүктеде функция да өсімше қабылдайды. Сонымен аргументтің x мәнінде функция мәні y=f(x) болады, ал аргуметтің x+Δx мәнінде функцияның мәні y+Δy=f(x+Δx) болады. Онда функцияның x нүктесіндегі өсімшесі Δy=f(x+Δx)-f(x) болады. Енді функция өсімшесінің аргумент өсімшесіне қатынасын қарастыралық:

Енді Δx→0 болғанда осы қатынастың шегі бар болсын делік, ол шекті f’(x) деп белгілеп f(x) функциясының x нүктесіндегі туындысы деп атаймыз. Сонымен анықтама бойынша:

немесе

Сонымен y функциясының x аргументі бойынша туындысы деп аргумент өсімшесі нольге ұмтылғанда функция өсімшесінің аргумент өсімшесіне қатынасының шегі бар болса сол шекті айтамыз екен.

 

Жалпы жағдайда функцияның кез-келген x нүктесінде оның туындысы f’(x) бар болады, сондықтан туындының өзі x аргументінің функциясы болады екен.

Туындыны оқулықтарда әртүрлі қылып белгілейді, мысалы:

Кейде туындының x=a нүктесінде есептелгенін көрсету керек болса мынандай да белгілеу қолданылады: y’|x=a.

Функцияның туындысын табуды функцияны дифференциалдау деп те айтады.

Егер y=f(x) функциясының x=x0 нүктесінде туындысы бар болса, яғни төмендегі шек бар болса:

онда біз y=f(x) функциясы x=x0 нүктесінде дифференциалданады деп те айтамыз.

Теорема. Егер y=f(x) функциясы x=x0 нүктесінде дифференциалданатын функция болатын болса (туындысы бар функция болатын болса) онда ол функция осы нүктеде үзіліссіз функция болады.

 







Дата добавления: 2015-09-18; просмотров: 6232. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия