Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кинематический анализ зубчатых механизмов





Применительно к зубчатым механизмам кинематический анализ сводится к определению их передаточных отношений.

4.8.1. Рядные механизмы

Пример механизма типа простой зубчатый ряд представлен на рис 4.14а. Определим его передаточное отношение, применив искусственное преобразование.

(4.19)

 

где k – количество внешних зацеплений.


 

Обобщая формулу (4.19) на произвольное число ступеней “n”, получим:

(4.20)

 

Таким образом, передаточное отношение механизма типа простой зубчатый ряд равно произведению передаточных отношений ступеней.

Этот вывод можно еще более обобщить: при последовательном соединении механизмов общее передаточное отношение равно произведению передаточных отношений соединяемых механизмов.

4.8.2. Механизмы с промежуточными колесами

Пример такого механизма представлен на рис 4.14 б, где колесо 2 – промежуточное. Определим его передаточное отношение, применив аналогичное искусственное преобразование.

(4.21)

 

Таким образом, передаточное отношение механизма с промежуточными колёсами не зависит от параметров промежуточных колёс.

4.8.3. Планетарные зубчатые механизмы

Планетарными называются механизмы, в составе которых есть колеса с подвижными осями. Приведем основные термины.

Колеса, оси которых неподвижны, называются центральными. Одно из центральных колес в планетарных механизмах – неподвижно. Колеса, оси которых подвижны, называются сателлитами. Звено, в котором устанавливаются оси сателлитов, называется водилом. Для схем планетарных механизмов приняты стандартизованные обозначения. Центральные колеса индексируются буквами a, b, e, сателлиты – g, f, водило индексируется буквой h.

Основными звеньями называются те, которые участвуют в передаче крутящего момента.

Планетарные механизмы разных схем имеют весьма разные свойства. Поэтому их разделили на классы. Каждый класс имеет обозначение, в котором указывается какие звенья являются основными. Например, у механизмов класса 2k-h основными являются 2 центральных колеса и водило; у механизмов класса 3k – 3 центральных колеса. Здесь мы рассмотрим только наиболее простые механизмы, относящиеся к классу 2k-h.

Механизм схемы “А”. Различные варианты этого механизма показаны на рис. 4.15. На структурных схемах планетарных механизмов на виде сбоку (рис. 4.15а,б,в) условно принято показывать только один сателлит, хотя на самом деле их как правило не меньше трех, как это показано на рис. 4.15г; лишь в приборостроении при небольших нагрузках применяют механизмы с двумя сателлитами.


В обозначении схемы механизма применяют три индекса: нижние индексы указывают входное и выходное звено, а верхний индекс указывает – какое звено неподвижно. Примеры показаны на рис. 4.15а,б,в. Также индексируется и передаточное отношение: iah(b), ibh(a), iab(h).

У планетарного механизма сателлиты совершают сложное движение, состоящее из вращения вокруг своих осей и переносного – вращения осей сателлитов вместе с водилом. Поэтому непосредственное определение передаточного отношения, так, как это было сделано, например, для рядных механизмов, в данном случае невозможно. Для решения этой задачи применяют метод инверсии (обращенного движения), суть которого состоит в следующем.

1. Всему механизму условно придают “минус угловую скорость водила”. В результате водило как бы останавливается, и мы получаем механизм с неподвижными осями колес. Его и называют механизмом с остановленным водилом (см. рис. 4.15в).

2. Передаточное отношение этого механизма легко определяется.

3. После этого, устанавливают связь между передаточным отношением механизма с остановленным водилом и передаточным отношением интересующего нас планетарного механизма.


Проделаем эти операции применительно к механизму схемы A ahb (см. рис. 4.15а). После остановки водила получаем механизм A abh, показанный на рис. 4.15в. Это механизм с промежуточным колесом, одним внешним и одним внутренним зацеплением, его передаточное отношение:

Попутно отметим, что передаточное отношение механизма с остановленным водилом взятое с обратным знаком, называют параметром планетарной передачи: p = – i ab (h).

Для установления связи между передаточными отношениями механизмов A ahb и A abh обозначим: w a – угловая скорость колеса a в механизме A ahb, w a *– угловая скорость колеса a в механизме A abh, и рассмотрим передаточное отношение последнего “по определению”:


Таким образом, мы получили основную формулу для определения передаточных отношений планетарных механизмов класса 2k-h.

(4.22)

 

В частности для механизма A ahb имеем:

(4.23)

 


Механизм схемы “B”. Структурная схема этого механизма показана на рис. 4.16а. Проделаем еще раз, применительно к этому механизму операции по методу инверсии.

После остановки водила получаем механизм B abh, показанный на рис. 4.16 б. Это рядный механизм с одним внешним и одним внутренним зацеплением, его передаточное отношение:


Тогда по формуле (4.22) для механизма схемы B ahb, получаем:

(4.24)

 

 

Механизм схемы “С”. Структурная схема этого механизма показана на рис. 4.17а.

После остановки водила получаем механизм С abh, показанный на рис. 4.17 б. Это рядный механизм с двумя внутренними зацеплениями, его передаточное отношение:


Тогда по формуле (4.22) для механизма схемы С ahb, получаем:

 

 

Однако механизм схемы “C” работоспособен только в направлении от водила к колесу a, передаточное отношение в этом случае

(4.25)

 

 

При проектировании планетарных зубчатых механизмов, в частности при подборе чисел зубьев, необходимо выполнять некоторые дополнительные условия.

Условие соосности. Входной и выходной валы механизма должны иметь одну геометрическую ось. Для схемы A это условие выражается как:

Z a + Zg = Zb – Zg

Для схемы B: m a g(Z a + Zg) = mfb(Zb – Zf) (4.26)

Для схемы C: m a g(Z a – Zg) = mfb(Zb – Zf)


Условие соседства сателлитов. Это условие должно проверяться только при числе сателлитов nW > 3, т.к. при nW £ 3 оно выполняется автоматически. Его физический смысл состоит в том, что между окружностями выступов двух соседних сателлитов должен быть зазор.


На рис. 4.18а представлена расчетная схема, где сателлиты занимают предельное положение, когда их окружности выступов уже касаются друг друга. По построению условие существования зазора:

Откуда, учитывая, что угол между осями сателлитов: jW = 2p/n W, получаем:

(4.27)

Условие сборки. Это условие накладывает ограничение на сочетание чисел зубьев колес так, чтобы, во-первых, обеспечить собираемость механизма, т.е. все зубья сателлитов должны точно входить во впадины ответных колес. А во-вторых, должен существовать период, через который в точности повторяются все фазы зацепления, что увеличивает долговечность передачи.

Для схемы A это условие выражается как:

 

(4.28)

 

где C – любое целое число.

Для схем B и C для упрощения сборки обычно назначают числа зубьев центральных колес кратными nW. Однако есть и более мягкие условия.

Для схем B и C:

 

(4.29)

 

где знак + берется для схем с разноименными зацеплениями, в частности для схемы B, знак “–” – для схем с одноименными зацеплениями, в частности схемы C.

Условие (4.29), полученное В.В. Добровольским и предполагающее наиболее простую технологию сборки иногда (хотя и редко) дает отрицательный результат для механизмов, которые могут быть собраны. Известны и другие, например, условие Меррита:

(4.30)

 

где L – наибольший общий делитель чисел Zg и Zf.

Однако, при использовании условия (4.30) нужно дополнительно рассчитывать, какие конкретно зубья сателлитов с какими впадинами центральных колес должны зацепляться.

Для механизмов схем B и C с двухвенцовыми сателлитами описанные условия сборки необходимо выполнять, когда сателлиты изготавливаются цельными (рис. 4.18 б) или венцы жестко фиксируются в одном блоке при сборке. Иногда, особенно в приборных конструкциях делается штифтовое крепление венцов (рис. 4.18в). В этом случае при сборке венцы поворачивают друг относительно друга, подбирая необходимое положение. В этом случае при подборе чисел зубьев условия сборки можно не соблюдать.

4.8.4. Волновые зубчатые механизмы

Волновыми называются механизмы, в составе есть которых упруго деформируемые колеса. По структуре эти механизмы можно отнести к планетарным. Приведем основные термины.

Колесо, которое в процессе работы упруго деформируется – называется гибким колесом.

Колесо, которое в процессе работы не деформируется – называется жестким.

Звено, деформирующее гибкое колесо и с точки зрения структуры являющееся водилом здесь называется генератором волн деформации или просто генератором.

Существует две схемы волновых механизмов:

а) С неподвижным гибким колесом.

б) С неподвижным жестким колесом.

Рассмотрим схему с неподвижным гибким колесом, как более распространенную. Структурная схема такого механизма представлена на рис. 4.19, где а – жесткое колесо, b – гибкое колесо, h – генератор волн, р – ролики.


Входным звеном в этих механизмах является генератор волн (h). Так как внешний диаметр генератора делается несколько большим, чем внутренний диаметр гибкого колеса, то генератор, с усилием вставленный внутрь колеса b, деформирует его. При его вращении генератора – вращается деформация гибкого колеса, а т.к. число зубьев колеса b (Z b) делается на 1 … 3 зуба меньше, чем Z a, то за каждый оборот генератора происходит разворот колеса а относительно колеса b. Например, если Z a – Z b = 1, то за полный оборот генератора h колесо а разворачивается относительно колеса b на угол, соответствующий шагу зацепления.


Найдем передаточное отношение механизма. После остановки водила в данном случае получаем зубчатую пару внутреннего зацепления.

Поскольку по структуре это планетарные механизмы, то можно воспользоваться формулой (4.22), тогда

(4.31)

 

 

Диапазон передаточных отношений. Из формулы (4.31) имеем:

(4.32)

 

где dB – деформация гибкого колеса.

Таким образом, деформация гибкого колеса обратно пропорциональна величине передаточного отношения. Следовательно, с ростом передаточного отношения уменьшается деформация гибкого колеса. Но как видно из рис. 4.19 (сечение A-A) его деформация должна быть достаточной, чтобы колеса a и b выходили из зацепления там, где генератор не воздействует на колесо b. Для того, чтобы это обеспечить при больших передаточных отношениях – колесо b надо изготавливать очень тонким. По этой причине передаточное отношение волновых механизмов обычно не превышает i ha (b) < 300.

С уменьшением передаточного отношения увеличивается деформация гибкого колеса. Но т.к. она должна оставаться в пределах упругих деформаций материала, то обычно удается создавать механизмы только с i ha (b) > 70.

Преимущества волновых механизмов.

1. Возможность создания механизмов с очень большим передаточным отношением в очень малых габаритах.

2. Возможность создания герметичных передач без уплотнения подвижных элементов.

Эти свойства предопределили применение этих механизмов, например, для привода вращения антенн космических аппаратов.

Недостатки волновых механизмов.

1. Невозможность создания механизмов с малым передаточным отношением.

2. При малых габаритах передачи получаются мелкомодульными, с ограниченными возможностями по передаче крутящих моментов.

4.8.5. Определение передаточных отношений

сложных зубчатых механизмов

 


Под “сложными” здесь будем понимать зубчатые механизмы, представляющие собой последовательное соединение механизмов, рассмотренных выше типов (рядные, с промежуточными колесами, планетарные, волновые).

На рис. 4.20 представлены примеры механизма, первая ступень которого (колеса 1, 2) представляет собой рядный механизм, а вторая ступень – планетарный механизм схемы “A”. Как было показано выше в п. 4.8.1 при последовательном соединении механизмов общее передаточное отношение равно произведению передаточных отношений соединяемых механизмов. Поэтому общее передаточное отношение механизма на рис. 4.20а:


При определении передаточных отношений сложных (или как их часто называют многоступенчатых) механизмов необходимо обращать внимание на направление включения ступеней. В частности, на рис. 4.20 б вторая (планетарная) ступень включена в обратном направлении, чем на рис. 4.20а, кроме того, первая ступень имеет внутреннее зацепление. Передаточное отношение такого механизма:


4.9. Силовой расчет зубчатых механизмов

Постановка задачи силового расчета в самом общем виде будет дана позже при рассмотрении силового расчета рычажных механизмов. При силовом расчете зубчатых механизмов решают три основные задачи:

1. Расчет крутящих моментов на валах.

2. Определение усилий в зацеплениях.

3. Определение реакций в опорах валов.







Дата добавления: 2015-09-19; просмотров: 2969. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия