Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Арифметическая и геометрическая прогрессии.





6.1. Пятый член арифметической прогрессии равен 8,4, а ее десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. 1 способ. Из условия задачи следует, что ; .

Значит, .

Так как , то .

Ответ: .

2 способ. Из свойств арифметической прогрессии следует, что . Значит, ; ; ; .

Ответ: .

 

6.3. Первый член арифметической прогрессии равен 6, а ее разность равна 4.Начиная с какого номера члены этой прогрессии больше 260?

Решение. Так как , то для решения задачи достаточно найти наименьшее натуральное n, при котором верно неравенство ; ; ; .

Наименьшее натуральное n, удовлетворяющее этому неравенству, равно 65.

Ответ: .

 

6.6. Найдите сумму всех последовательных натуральных чисел с 60 до 110 включительно.

Решение. Сумму 60+61+…+110 естественно рассматривать как сумму 51 члена арифметической прогрессии с и . Тогда .

Ответ:4335.

 

6.8. В геометрической прогрессии и . Найдите .

Решение. Из условия задачи следует, что ; . Значит , т.е. или . Если , то . Если , то .

Ответ: или .

 

6.14. Существует ли арифметическая прогрессия, в которой , и ?

Решение. Предположим, что данная прогрессия существует.

Так как ; , то .

Так как ; , то .

Т. е. - противоречие, следовательно, предположение неверно. Требуемой прогрессии не существует.

Ответ: не существует.

 

6.22. Существует ли геометрическая прогрессия, в которой, , и ?

Решение. 1 способ. Очевидно, геометрическая прогрессия с и существует. Если , , то , .

Так как - верное числовое равенство, то 192 является седьмым членом этой прогрессии. Значит, геометрическая прогрессия, удовлетворяющая условию задачи, существует.

Ответ: существует.

2 способ. Да, существует. Например, геометрическая прогрессия, у которой и . Действительно, ; ; .

Ответ: существует.

 

6.28. Найдите сумму первых 20 совпадающих членов двух арифметических прогрессий:

3, 8, 13,… и 4, 11, 18,….

Решение. Совпадающие члены данных прогрессий также образуют арифметическую прогрессию. Выписав несколько первых членов этих прогрессий: 3; 8; 13; 18; 23;… и

4; 11; 18; 25;…, находим, что первый член новой прогрессии равен 18. Так как разность первой прогрессии равна 5, а второй – 7, а 5 и 7 – взаимно простые числа, то разность новой прогрессии равна 35. Итак, следует найти сумму 20 членов арифметической прогрессии, у которой ; ; .

Ответ: 7010.

 

6.29. Решите уравнение .

Решение. Выражение, стоящее в левой части уравнения, естественно рассматривать как сумму сорока членов арифметической прогрессии с и .

Эта сумма равна . Таким образом исходное уравнение принимает вид , откуда ; .

Ответ: 1.

6.30. Решите уравнение .

Решение. Из условия задачи следует, что - натуральное число. Каждое слагаемое в левой части уравнения содержит общий множитель . Вынося его за скобку, получим . Выражение в скобках естественно считать суммой первых членов арифметической прогрессии, у которой ; ; (или ; ; ). Эта сумма равна . Таким образом, уравнение принимает вид ; ; ; .

Ответ: 19.

 

6.33. Сколько существует натуральных трехзначных чисел, которые делятся только на одно из чисел 4 или 5?

Решение. Из условия задачи следует, что искомые числа - это трехзначные числа, делящиеся либо на 4, либо на 5, но при этом не делящиеся на 20. Первые числа: 100; 104;…;996. Их количество . Вторые числа: 100; 105;…;995. Их количество . Трехзначные числа, делящиеся на 20: 100; 120;…; 980. Их количество . Заметим, что числа, делящиеся на 20, содержатся и в первой, и во второй группе. Следовательно, количество искомых чисел равно (225-45)+(180-45)=315.

Ответ: 315.

 

6.35. В арифметической прогрессии среднее арифметическое первых десяти ее членов равно 20. Найдите первый член и разность этой прогрессии, если известно, что они являются числами натуральными.

Решение. Из условия задачи следует, что ; ; . Так как и - натуральные, то - четное.

При имеем ; .

При имеем ; .

При не будет натуральным числом. Следовательно, либо

, либо , .

Ответ: , или , .

 

 







Дата добавления: 2015-08-12; просмотров: 2270. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия