Студопедия — Функція Лагранжа і закони збереження.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функція Лагранжа і закони збереження.






 

В § 13 ми дали формальне визначення (13.19) функції Лагранжа. Тут ми покажемо, що функція Лагранжа має глибокий фізичний зміст – вона є найважливіша характеристична функція механічної системи, що містить у собі величезну фізичну інформацію про стан системи в довільний момент часу. Щоб переконатися в цьому, досить показати, що вже по зовнішньому вигляді функції Лагранжа досить просто відшукати закони збереження, тобто такі найважливіші перші інтеграли рівнянь Лагранжа, які пов’язані із симетріями простору й часу (або зовнішнього силового поля) і накладених на систему в'язів (див. р. 2).

Розглянемо механічну систему, функція Лагранжа якої явно від часу не залежить, тобто ; допустимо також, що на систему не діють дисипативні сили. Покажемо, що цієї інформації досить для одержання закону збереження повної енергії зазначеної системи.

Для цього записуємо повну похідну по часом від :

 

.

 

Заміняючи тут відповідно з (13.18) на , одержуємо:

 

або

. (14.1)

 

З (14.1) видно, що якщо , то в процесі руху системи зберігається величина:

 

, (14.2)

 

називана повною механічною енергією. Умову консервативності системи можна розглядати як вимогу інваріантності її функції Лагранжа відносно перетворень «зсуву» у часі: (див. § 9). Фізично ця вимога є наслідком виконання двох умов: 1) однорідності часу для замкнутих систем (або незалежності від часу зовнішніх силових полів); 2) стаціонарності в'язів, накладених на систему.

Нове (у порівнянню з даним в § 9) визначення (14.2) повної енергії є більш загальним (тому перший інтеграл руху (14.2) іноді називають законом збереження узагальненої енергії), але у всіх випадках, коли можна користуватися поняттям повної потенціальної енергії, визначення (14.2) збігається зі звичайним визначенням повної енергії як суми кінетичної й потенціальної енергій. Наприклад, для системи, на яку діють тільки потенційні сили, функція Лагранжа має вигляд (13.29), при цьому згідно (13.32):

 

 

і, отже, повна енергія (14.2) дорівнює: . Розглянемо ще один приклад консервативної системи (для який ) з узагальнено-потенційними силами, узагальнений потенціал якої можна представити у вигляді суми , де - однорідналінійна функція узагальнених швидкостей , і - звичайна потенціальна енергія, що залежить тільки від узагальнених координат . У цьому випадку, згідно (13.30)

і:

 

 

і, отже, повна енергія (14.2) дорівнює:

 

,

 

тобто в цьому випадку з повної енергії (14.2) обов'язково випадає лінійний по узагальнених швидкостях член .

Розглянемо тепер питання про зв'язок виду функції Лагранжа із законами збереження імпульсу й моменту імпульсу системи (див. §§ 10-11). При цьому варто врахувати, що використовуючи «мову» узагальнених координат потрібно вживати поняття узагальнених імпульсів, тобто деяких узагальнень звичайних понять імпульсу й моменту імпульсу. Тому дамо спочатку відповідне визначення.

Узагальненими імпульсами механічної системи називають скалярні величини, які визначаються формулою:

 

, (14.3)

 

Якщо узагальнена координата має розмірність довжини, то відповідний їй узагальнений імпульс має розмірність звичайного імпульсу (наприклад, узагальнені імпульси вільної системи збігаються із проекціями звичайних імпульсів); якщо - безрозмірна кутова змінна, то має розмірність моменту імпульсу.

Природно, що структура узагальнених імпульсів невільної системи виявляється більш складною в порівнянні з виразами для імпульсу й моменту імпульсу (див. § 3) вільної системи. Наприклад, для системи, описуваною функцією Лагранжа (13.29), мають вигляд:

 

. (14.4)

 

Використовуючи поняття узагальненого імпульсу (14.3), рівняння Лагранжа (13.18) можна переписати у вигляді:

. (14.5)

 

Нерідко трапляється так, що деякі з у явно не входять (а входять лише їхні похідні по часом ); такі називаються циклічними координатами й для них . Тоді з (14.5) одержуємо наступний закон збереження: якщо узагальнена координата є циклічної, то зберігається відповідний їй узагальнений імпульс , тобто

 

, якщо . (14.6)

 

Помітимо, що циклічність деякої координати (тобто вимога ) фізично є умовою інваріантності функції Лагранжа L системи відносно перетворення або повороту системи як єдиного цілого, тобто перетворення вигляду:

 

. (14.7)

 

Дійсно, якщо інваріантною відносно перетворень (14.7), то її збільшення , обумовлене цими перетвореннями, повинне обертатися в нуль, тобто , що еквівалентно вимозі .

У свою чергу, інваріантність відносно перетворень (14.7) є наслідком виконання наступних двох фізичних умов: 1) однорідності або ізотропності простору (або наявності відповідної симетрії зовнішніх силових полів) – див. §§ 10-11; 2) наявністю відповідної симетрії накладених на систему в'язів.

Звідси випливає методична рекомендація:

хоча набори узагальнених координат, пов'язаних між собою точковими перетвореннями (13.14), теоретично рівноправні, однак для спрощення рішень конкретних задач механіки методом Лагранжа узагальнені координати системи варто вибирати з урахуванням симетрії задачі; тільки в цьому випадку окремі можуть виявитися циклічними, а відповідні їм - постійними (а значення цих найважливіших інтегралів руху, як указувалося в § 8, значно спрощує інтегрування диференціальних рівнянь руху Лагранжа).

Т. ч., функція Лагранжа дійсно є найважливішою функцією стану механічної системи: знання явного вигляду дозволяє не тільки скласти рівняння руху для систем з потенційними й узагальнено-потенційними активними силами, але й одержати закони збереження для таких систем.

 

 

§ 15. Основна задача варіаційного числення.

Рівняння Ейлера.

 

З метою подальшого розвитку методу Лагранжа в цьому параграфі ми попередньо познайомимося з деякими елементами варіаційного числення – спеціального розділу математики, що займається дослідженням екстремальних властивостей криволінійних інтегралів, що залежать від вибору однієї або декількох функцій (такі криволінійні інтеграли називають функціоналами).

Найпростішим функціоналом є криволінійний інтеграл:

 

, (15.1)

 

залежний від вибору однієї функції . Тут .

Основна задача варіаційного числення (у застосуванні до (15.1)) складається в знаходженні такої функції , що: 1) забезпечує екстремум функціоналові (15.1) і 2) задовольняє граничним умовам:

 

, (15.2)

 

де , – наперед задані величини.

Найпростіший шлях розв’язок поставленої задачі полягає в наступному. Допустимо, що задача вирішена і функція є шукане розв’язок варіаційної задачі. Знайдемо необхідні умови, яким повинна задовольняти ця функція, щоб функціонал I мав екстремум. Із цією метою побудуємо нову функцію , близьку до (див. мал.)

 

 


, (15.3)

 

де - довільна функція, що задовольняє таким граничним умовам щоб підкорялася тим же умовам (15.2), що й , тобто:

 

, (15.4)

 

і - малий чисельний параметр.

Підстановка (15.3) в (15.1) приводить до деякої допоміжної функції параметра :

. (15.5)

 

Тим самим задача знаходження екстремуму функціонала (15.1) звелася до дослідження на екстремум функції однієї змінної . А для цього, як відомо, необхідно знайти значення похідної при й прирівняти його нулю (при цьому екстремум функціоналові (15.1) забезпечує по нашому припущенню функція , що виходить із функції (15.3) при ).

Обчислимо спочатку похідну від (15.5), використовуючи відоме правило диференціювання інтеграла по параметру:

 

. (15.6)

Інтегруючи другий інтеграл у правій частині (15.6) по частинам з урахуванням граничних умов (15.4) одержуємо:

 

. (15.7)

З врахуванням (15.7) перепишемо (15.6) у вигляді:

 

,

звідки умова екстремуму , а, отже, і функціонала I запишеться у вигляді:

, (15.8)

 

де ми врахували, що й .

Так як - довільна функція, то ми дійдемо висновку, що рівність (15.8) має місце тільки в тому випадку, якщо коефіцієнт, що міститься перед у підінтегральному виразі, тотожно звертається в нуль, тобто:

. (15.9)

 

Рівність (15.9) називається рівнянням Ейлера. Так як функція містить першу похідну , то ліва частина (15.9) буде містити другу похідну , тому рівняння Ейлера є звичайним диференціальним рівнянням другого порядку відносно шуканої функції , і, отже, загальне розв’язок рівняння (15.9) містить дві довільні сталі, які визначаються граничними умовами (15.2). Т. ч., ми довели, що функція , що реалізує екстремум (15.1), повинна задовольняти рівнянню Ейлера (15.9).







Дата добавления: 2015-08-12; просмотров: 1397. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия