Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Узагальнимо отримані результати для функціонала





, (15.10)

залежного від S незалежних функцій й їхніх похідних . Основна варіаційна задача в застосуванні до (15.10) складається в знаходженні такого набору функцій , які: 1) реалізують екстремум функціонала (15.10) і 2) задовольняють граничним умовам:

 

, (15.11)

де , - задані величини.

У повній аналогії з попереднім, будуємо нові функції , близькі до :

, (15.12)

де - довільні функції, що задовольняють граничним умовам:

, (15.13)

і - малі чисельні параметри. Зводимо задачу до відшукання екстремуму функції:

. (15.14)

Умову екстремуму функції (15.14) можна записати у вигляді:

, (15.15)

де ми позначимо . Множачи кожне i- ту рівність (15.15) на й складаючи отримані результати почленно, одержуємо наступний еквівалентний запис умови екстремуму у вигляді одного рівняння:

. (15.16)

Підставляючи сюди (15.14) і використовуючи правило диференціювання інтеграла по параметру, перепишемо (15.16) у такий спосіб:

 

(15.17)

Для підінтегральної функції в лівій частині (15.17) маємо:

 

. (15.18)

Підставляючи (15.18) в (15.17) і інтегруючи другий інтеграл по частинам з урахуванням граничних умов (15.13), одержуємо:

. (15.19)

В силу дозвілля свободи функцій з (15.19) випливає висновок: функції , що реалізують екстремум функціонала (15.10), повинні задовольняти системі рівнянь Ейлера:

 

. (15.20)

 

Отримані результати можна сформулювати в трохи іншому (еквівалентному) вигляді, якщо скористатися поняттям варіації функції й варіації функціонала. У повній відповідності з визначенням варіації функції в § 12, ми визначаємо варіації функцій згідно (15.12) у такий спосіб:

 

. (15.21)

 

Варіювання будь-якої функції спричиняє варіювання і її похідної ; варіацію ми згідно (15.14) визначаємо формулою:

 

(15.22)

 

З визначень (15.21) і (15.22) випливає важливе правило обчислення варіацій: операції варіювання й диференціювання можна переміщувати, тобто:

 

. (15.23)

 

Дійсно, диференціюючи по рівність (15.21)

 

,

 

і порівнюючи цей результат з (15.22), одержуємо (15.23).

У результаті варіювання функцій й їхніх похідних одержує приріст і будь-яка функція виду ; варіацією функції називається лінійна по й частина приросту цієї функції, тобто:

 

. (15.24)

 

(Для одержання (15.24) потрібно розкласти в ряд по й й обмежитися для першим не зникаючим доданком).

Нагадаємо, що відповідно до (15.14), . Праві частини рівностей (15.24) і (15.18) рівні (з врахуванням (15.21) і (15.22)), тому формула:

 

(15.25)

 

дає еквівалентне (15.24) визначення варіації функції .

За аналогією з (15.25), першою варіацією функціонала (15.10) або просто варіацією функціонала (15.10) називають величину , обумовлену вираженням:

(15.26)

 

Визначення (15.26) дозволяє переписати результат (15.19) у вигляді:

 

. (15.27)

 

Тим самим ми одержали інше формулювання результату розв’язку основної варіаційної задачі: функції , , що реалізують екстремум функціонала (15.10), повинні перетворювати в нуль варіацію функціонала . Це твердження, як видно з (15.27), рівносильні вимозі (15.20); дійсно, так як функції незалежні, то також незалежні й, отже, довільні, тому рівність має місце тільки при виконанні рівнянь Ейлера (15.20).

Визначення (15.25) і (15.26) дозволяють «витягти» з (15.17) важливе правило: операції варіювання й інтегрування можна міняти місцями, тобто:

 

. (15.28)

 

Зауваження. За аналогією з визначенням (15.24) можна дати інше (еквівалентне (15.26)) визначення першої варіації функціонала: варіацією функціонала (15.10) називається лінійна (головна) частина приросту:

 

, (15.29)

 

яке одержує функціонал внаслідок варіації функцій й їхніх похідних у підінтегральному виразі (відзначимо тут, що у фізичній літературі іноді варіацією називають саме приріст (15.29), тобто величину , що математично некоректно). Для одержання явного виразу для розкладемо функцію в (15.29) у ряд по ступенях й й обмежимося в цьому розкладанні тільки членами першого порядку малості (тим самим ми і одержуємо лінійну частину різниці ):

 

 

. (15.30)

 

З огляду на визначення (15.24) і (15.25), дійдемо висновку, що визначення варіації функціонала (15.30) еквівалентно визначенню (15.26). Помітимо, що визначення (15.30) з врахуванням (15.24) фактично збігається із властивістю операції варіювання (15.28).

 

§ 16. Принципи найменшої дії







Дата добавления: 2015-08-12; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия