Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Випадковi величини. Властивостi функцiй розподiлу.





Нехай маємо ймовірносний простір (, F, P). - деяка функція, визначена на .

Озн. -буде вимірною функцією, якщо

, де F алгебра.

Озн. Вимірна функція - випадкова величина,

.

Озн. F(x)= - функція розподілу випадкової величини .

Властивості функцій розподілу.

1. F(x) – невід’ємна

2. F(x) - монотонно неспадна.(x1>=x2 => F(x1)>=F(x2))Справді:

Отже

3. F(x) - неперервна зліва. Тобто F(x-0) = F(x)

4. Нормованою F(- ) = 0, F(+ ) = 1.

Дискретні випадкові величини.

Нехай <W, Á,R>- ймовірнісний простір. Дискретноювипадковою величиною називається функція x(w) на W, яка набуває скінченне або зліченне число значень х1, х2, …, хn, … і є вимірною відносно s- алгебри Á. Це означає, що для кожного хі{ w: x(w)=x} ÎÁ (1).Дійсно, якщо для функції x(w) має місце співвідношення (1), то ця функція вимірна відносно Á, так як для кожного дійсного х { w: x(w)<x}= { w: x(w)=xі} ÎÁ. Крім того, якщо x(w) вимірна відносно s- алгебри Á, то за Теоремою 1 для кожного дійсного х { w: x(w)=x } ÎÁ. Таким чином, якщо x(w)- дискретна випадкова величина на ймовірнісному просторі <W, Á,R>, яка приймає значення х1, х2, …, хn, …, то для кожного n визначена ймовірність Рn=Р{ w: x(w)=xn} Нехай x(w) – дискретна випадкова величина, яка набуває значення х1,…, хі,…. Набір чисел Р{w:x(w)=xi}=pi(i=1,2,…) називають розподілом випадкової величини x. Зрозуміло, що рі³ 0, .

Функція розподілу дискретної випадкової величини x(w) визначається рівністю

Сумісний розподіл випадкових величинx(w) і h(w). Нехай x(w) – дискретна випадкова величина, яка набуває значень х1, х2,…, хі,…,h(w) – дискретна випадкова величина, яка набуває значень y1, y2,…, yі,…. Набір чисел Р{w:x(w)=xi, h(w)=yi}=pij(i=1, 2, …; j=1, 2, …) називається сумісним розподілом випадкових величин x і h (розподілом випадкового вектора (x, h)). Мають місце такі твердження:

а) рij³0,

б) де {pi} розподіл x(w), {qi} – розподіл h(w).

Незалежні випадкові величини. Випадкові величини x і h
н а з и в а ю т ь с я н е з а л е ж н и м и, якщо для будь-яких i j

P{x(w)=xi, h(w)= yi} = P{x(w)=xi} · P{h(w)= yi}.

Математичне сподівання випадкової величини. Нехай x(w) – дискретна випадкова величина, яка набуває значень хі з імовірностямирі(і=1, 2, …). Припустимо, що ряд S½хі½рі збігається. Тоді м а т е м а т и ч н и м с п оді-

в а н н я м випадкової величини x(w) називається сума ряду М x(w) = Якщо S½хі½рі=+¥, то кажуть, що випадкова величина x(w) не має математичного сподівання. Математичне сподівання суми випадкових величин дорівнює сумі математичних сподівань.

Дисперсія випадкової величини x(w) визначається рівністю

Dx=M[x- Mx]2= Mx2-(Mx)2=

Властивості дисперсії.

1. Dx=0 x=соnst;

2. Dx=

3. D(Cx)=c2 Dx;

4. D(x C)= Dx.

5. Якщо та незалежні випадкові величини, то D( )= D +D .

Коєфіцієнтковаріаціївипадкових величин та це: cov(x, h)=M(x-Mx)(h-Mh).

Коефіцієнт кореляції. К о є ф і ц і є н т о м к о р е л я ц і ї випадкових величин x і h називаються

Мають місце такі твердження:

а) ½r(x, h)½£ 1;

б) якщо x і h незалежні, то r(x, h)=0;

в) якщо ½r(x, h)½=1, то з імовірністю одиниця h=аx+b, де а і b – деякі сталі.

 








Дата добавления: 2015-08-12; просмотров: 1327. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия