Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Схема Бернулли.





Опр.1. Схемой Бернулли(или последовательностью независ.одинаковых испытаний или биноминальной схемой испытаний) наз-ся послед-ть испытаний,удовлетворяющая трем условиям: 1.при каждом испытании возм.только 2 исхода:1.появл.событие А-успех, Ас- -неуспех. 2.испытания независимы,т.е вер-ть успеха в катом(k) испытании независ. от испытания 1,...,k-1. 3.вероятность успеха постоянна u=p (Р(А)=р). вероятность неуспеха = q (P(Ac-)=1-p=q)

Теорема1. Ф.Бернулли

Вер-ть того,что произойдет к-успехов в послед-ти n испытаний вычисляется по форм-ле:

Pn(k)=Cn(k)=C^k n*p^k*q^(n-k). k=0,...,n

Замечание: E(n k=0) Pn(k)=E C^k n*p^k*q^(n-k)=(p+q)^n=1.

Пр.:1. монета подбр-ся 5 раз. Найти вер-ть выпадения 3х гербов.

n=5 успех-Г р=1/2 q=1/2 k=3 p5(3)=C^3 5(1/2)^3*(1/2)^2=5!/3!*2!=5/16

Следствие 1. Р(k1<=k<=k2) = E (k2 k=k1) C^k n*p^k*q^(n-k), 0<=k1,=k2,=n

Следствие 2. к1=1, k2=n. P(k>=1)=1-P(k=0) =1-C^0 n*p^0*q^n=1-q^n

Пр.: Монета бросается 5 раз. Вер-ть появления хотя бы 1 герба. n=5 q=1/2 P(хотя бы 1герб)=1-(1/2)^5=31/32

Опр.2. число наступлений событий А,наз-ся наивероятным,если оно имеет наиб.вер-ть по сравнению с вер-ми наступления А любое другое число раз.

Теорема 2. Наивероятнейшее число наступлений события А в н испытаниях нах-ся в пределах np-q и np+q

Пр.:Бросается монета 5 раз. Успех-Г. n=5,p=1/2,q=1/2. np-q=5*1/2-1/2=2. np+p=5*1/2+1/2=3. Ответ:Г выпадет 2 или 3 раза.

 

 

10.Локальная,интегральная теоремы Муавра-Лапласа. Т. Позволяет приблеженно найти вероятность появления события ровно k раз в n испытаниях, если число испытании достаточно велико.

Рассм.случай схемы Бернулли,когда с ростом n вероятность р уменьшается пропорционально n.

Локальная теорема Муавра-Лапласа.

Pn(k)~= 1/(корень(npq)*фи(x), где x=(k-np)/(корень(npq)),при больших n,где фи(х)=1/корень из 2пи*е^(-x^2\2)-табличное значение. Функция фи(х) явл-ся четной и наз-ся ф-цией Гаусса. Для вычисления вероятности того,что соб.А появится в n испытаниях менее k1 и не более k2 раз Pn(k1<=k<=k2),можно воспользоваться интегральной теоремой Муавра-Лапласа.

Пр.:Вер-ть,что посетитель сделает заказ=0,8 р=0,8

Найти вер-ть того,что из 100 посетителей 75 сделает заказ. n=100,k=75

P100(75)~=1/(корень(100*0,8*0,2))*фи(75-80/корень из 16)=1/4*фи(-5/4)=1/4*4(1,25)=1/4*0,1826=0,0457

 

Интегральная теорема Муавра-Лапласа. Если вероятность p наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероят-ть Pn(k1,k2) того, что событие А появится в n испытаниях от k1 до k2 раз, приближенно равна определенному интегралу.

Pn(k1<=k<=k2)~=Ф(k2-np\(корень(npq))-Ф(k1-np/(корень(npq))

Ф(х)=1/(корень из 2Пи)*(интеграл из е^(-y^2/2))*dy

Ф(х)-ф.Лапласа. х>=5 Ф(х)=1/2 Ф(х)-неч Ф(-х)=-Ф(х)

Пр.:30% призывников имеют 45й размер обуви. В часть прибыло 300 призывников. Найти вероятность,что 68 пар 45 размера хватит.

Р=0,3 n=300 k1=0 k2=68 P300 (0<=k<=68)=Ф(68-300*0,3)/(корень(300*0,3*0,7))-Ф(0-300*0,3/(корень(300*0,3*0,7))=Ф(-2,77)=1\2 = 1\2-Ф(2,77).

 







Дата добавления: 2015-08-12; просмотров: 750. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия