Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Рунге - Кутта.





Является наиболее популярным из одношаговых методов. Пусть y (t) - решение дифференциального уравнения y' = f (t,y), удовлетворяющее условию y (tn) = yn. Из формулы Ньютона - Лейбница

следует: (6)

Если интеграл в формуле (6) можно было вычислить точно, то получилось бы простое выражение. Однако, в действительности это невозможно, поэтому будем строить приближенную формулу, заменив интеграл квадратурной суммой. Введем на отрезке [tn,tn+1] m вспомогательных узлов

где

Заменяя, входящий в равенство (6) интеграл квадратурной суммой с узлами tn(1),...,tn(m), получим приближенное равенство:

(7)

Однако воспользоваться равенством (7) нельзя, т.к. значения y в т. неизвестны. Чтобы найти их запишем:

(8)

Заменяя в этом равенстве для каждого i входящий в него интеграл соответствующей квадратурной формулой с узлами tn(1), tn (2),..., tn(i-1), получим приближенные равенства:

позволяющие последовательно вычислить приближения k y(tn(2)),..., y(tn(m)). Обозначим через yn(i) вспомогательные величины, являющиеся приближениями k y(tn(i)). Пусть kn(i) = f (tn(i), yn(i)) - приближение к значению углового коэффициента k в точке tn(i). В этом случае расчетные формулы примут вид:

Если выбросить вспомогательные величины yn(i), то те же формулы можно записать в виде:

Полученный метод носит название m - этапного метода Рунге - Кутта.

Выбор конкретных значений параметров осущ. исходя из различных соображений, одним из кот. м. б. желание сделать порядок аппроксимации максимально возможным.

Метод Рунге - Кутта четвертого порядка точности:

 

 







Дата добавления: 2015-08-12; просмотров: 435. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия