Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обобщенные координаты точка уравнения Лагранжа второго рода.





Обобщенными координатам называются независимые между собой параметры любой размерности число которых равно числу степеней свободы которые однозначно определяют положение системы. формула 20.4.1

Первой производной обобщенной координат называют Обобщенной скорости 20.4.2

Вторые производные по времени от обобщенных координат называют Обобщенным ускорением 20.4.3

Посколюку положение всей системы определяются обобщенными координатами а положение каждой точки определяется ее радиус вектор то радиус вектор катой можно выразить через обобщенные координаты формула 21.

Для того чтобы определить обобщенную силу запишем работу всех обобщенных сил формула 21.2 Найдем вариацию радиуса вектора учитывая 21.1 будет формула 21.3

Теперь подстввим 21.3. в 21.2 и поменяем порядок суммирования и получим формула 21.3.2 формулу 21.4

Введя обозначения последнее равенство примет вид формула 21.5

Коофицент Qj при вариации обобщенной координаты выражение и доработка всех активных сил называется обобщенной силой соответствующей обобщенной координате qj.

Чтобы найти обобщенную силу Q1 придают систему такое возможное перемещение при котором вариации всех возможных координат кроме дельта q1 равны =0 и вычисляют на этом возможном перемещении суммарную работу всех активных сил. Коофицент получивший при дельта q1 и будет обобщенная сила Q1 соответствующая обобщенной координате q1.

Рассмотрим равновесие системы в обобщенных координат согласно принципу возможных перемещений при авновесии системы должно выполнятся равенство формула 21.5.1. Данное равенство при любых дельта q1 j данное равенство будет выполнятся если формула 21.6

Если все силы в системе потенциальны то для системы можно ввести потенциальную энергию котороая будет функция ей только для обобщенной координат. Формула 21.6.1 тогда обобщенные силы можно найти следующим образом формула 21.7 Если система находится в равновесии согласно 21.6 формула 21.7.1 это значит что полный деференциал равен 0 формула 21.8

Это ознаает что положение равновесия потенциальной энергии консервативной системы принемает экстримальные значения min или max. Теорема Лагранжа Дирихле положение равновесия консервативной системы будет устойчиво если потенциальная энергия в данном положении имеет строгий минимум.

Уравнение логранжа второго рода формула 21.9 если все силы в системе потенциальны то уравнение лагранжа примет вид формула 21.10 где L = Т-П где L – функция Лагранжа







Дата добавления: 2015-09-04; просмотров: 534. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия