Дисперсионного анализа
Вернемся к задаче, поставленной в § 1: проверить при заданном уровне значимости нулевую гипотезу о равенстве нескольких (р > 2) средних нормальных совокупностей с неизвестными, но одинаковыми дисперси» ями. Покажем, что решение этой задачи сводится к сравнению факторной и остаточной дисперсий по критерию Фишера — Снедекора (см. гл. XIX, § 8). Пусть нулевая гипотеза о равенстве нескольких средних (далее будем называть их групповыми) правильна. В этом случае факторная и остаточная дисперсии являются несмещенными оценками неизвестной генеральной дисперсии (см. § 4) и, следовательно, различаются незначимо. Если сравнить эти оценки по критерию F, то очевидно, критерий укажет, что нулевую гипотезу о равенстве факторной и остаточной дисперсий следует принять. Таким образом, если гипотеза о равенстве групповых средних правильна, то верна и гипотеза о равенстве факторной и остаточной дисперсий. Пусть нулевая гипотеза о равенстве групповых средних ложна. В этом случае с возрастанием расхождения между групповыми средними увеличивается факторная дисперсия, а вместе с ней и отношение F„a6j[ — sJaKT/s5cT. В итоге /^абл окажется больше FKp и, следовательно, гипотеза о равенстве дисперсий будет отвергнута. Таким образом, если гипотеза о равенстве групповых средних ложна, то ложна и гипотеза о равенстве факторной и остаточной дисперсий. Легко доказать от противного справедливость обратных утверждений: из правильности (ложности) гипотезы о дисперсиях следует правильность (ложность) гипотезы о средних. Итак, для того чтобы проверить нулевую гипотезу о равенстве групповых средних нормальных совокупностей с одинаковыми дисперсиями, достаточно проверить по критерию F нулевую гипотезу о равенстве факторной и остаточной дисперсий. В этом и состоит метод дисперсионного анализа. Замечание 1. Если факторная дисперсия окажется меньше остаточной, то уже отсюда следует справедливость гипотезы о равенстве групповых средних и, значит, нет надобности прибегать к критерию F, Замечание 2. Если нет уверенности в справедливости предположения о равенстве дисперсий рассматриваемых р совокупностей, То это предположение следует проверить предварительно, напрнмер по критерию Кочрена. Пример. Произведено по 4 испытания на каждом нз трех уровней. Результаты испытаний приведены в табл. 32. Методом дисперсионного анализа при уровне значимости 0,05 проверить нулевую
|