Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсионного анализа





Вернемся к задаче, поставленной в § 1: прове­рить при заданном уровне значимости нулевую гипотезу о равенстве нескольких (р > 2) средних нормальных со­вокупностей с неизвестными, но одинаковыми дисперси» ями. Покажем, что решение этой задачи сводится к срав­нению факторной и остаточной дисперсий по критерию Фишера — Снедекора (см. гл. XIX, § 8).

Пусть нулевая гипотеза о равенстве нескольких средних (далее будем называть их групповыми) пра­вильна. В этом случае факторная и остаточная дисперсии являются несмещенными оценками неизвестной генераль­ной дисперсии (см. § 4) и, следовательно, различаются незначимо. Если сравнить эти оценки по критерию F, то очевидно, критерий укажет, что нулевую гипотезу о равенстве факторной и остаточной дисперсий следует принять.

Таким образом, если гипотеза о равенстве групповых средних правильна, то верна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Пусть нулевая гипотеза о равенстве групповых средних ложна. В этом случае с возрастанием расхожде­ния между групповыми средними увеличивается фактор­ная дисперсия, а вместе с ней и отношение F„a6j[sJaKT/s5cT. В итоге /^абл окажется больше FKp и, следовательно, гипотеза о равенстве дисперсий будет отвергнута.

Таким образом, если гипотеза о равенстве групповых средних ложна, то ложна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Легко доказать от противного справедливость обрат­ных утверждений: из правильности (ложности) гипотезы о дисперсиях следует правильность (ложность) гипотезы о средних.

Итак, для того чтобы проверить нулевую гипотезу о равенстве групповых средних нормальных совокупностей с одинаковыми дисперсиями, достаточно проверить по критерию F нулевую гипотезу о равенстве факторной и остаточной дисперсий. В этом и состоит метод диспер­сионного анализа.

Замечание 1. Если факторная дисперсия окажется меньше остаточной, то уже отсюда следует справедливость гипотезы о равен­стве групповых средних и, значит, нет надобности прибегать к кри­терию F,

Замечание 2. Если нет уверенности в справедливости пред­положения о равенстве дисперсий рассматриваемых р совокупностей, То это предположение следует проверить предварительно, напрнмер по критерию Кочрена.

Пример. Произведено по 4 испытания на каждом нз трех уров­ней. Результаты испытаний приведены в табл. 32. Методом диспер­сионного анализа при уровне значимости 0,05 проверить нулевую


Номер испытания Уровни фактора Fj
i Р, Р . F,
       
       
       
       
*гр/      






Дата добавления: 2015-09-06; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия