Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсионного анализа





Вернемся к задаче, поставленной в § 1: прове­рить при заданном уровне значимости нулевую гипотезу о равенстве нескольких (р > 2) средних нормальных со­вокупностей с неизвестными, но одинаковыми дисперси» ями. Покажем, что решение этой задачи сводится к срав­нению факторной и остаточной дисперсий по критерию Фишера — Снедекора (см. гл. XIX, § 8).

Пусть нулевая гипотеза о равенстве нескольких средних (далее будем называть их групповыми) пра­вильна. В этом случае факторная и остаточная дисперсии являются несмещенными оценками неизвестной генераль­ной дисперсии (см. § 4) и, следовательно, различаются незначимо. Если сравнить эти оценки по критерию F, то очевидно, критерий укажет, что нулевую гипотезу о равенстве факторной и остаточной дисперсий следует принять.

Таким образом, если гипотеза о равенстве групповых средних правильна, то верна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Пусть нулевая гипотеза о равенстве групповых средних ложна. В этом случае с возрастанием расхожде­ния между групповыми средними увеличивается фактор­ная дисперсия, а вместе с ней и отношение F„a6j[sJaKT/s5cT. В итоге /^абл окажется больше FKp и, следовательно, гипотеза о равенстве дисперсий будет отвергнута.

Таким образом, если гипотеза о равенстве групповых средних ложна, то ложна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Легко доказать от противного справедливость обрат­ных утверждений: из правильности (ложности) гипотезы о дисперсиях следует правильность (ложность) гипотезы о средних.

Итак, для того чтобы проверить нулевую гипотезу о равенстве групповых средних нормальных совокупностей с одинаковыми дисперсиями, достаточно проверить по критерию F нулевую гипотезу о равенстве факторной и остаточной дисперсий. В этом и состоит метод диспер­сионного анализа.

Замечание 1. Если факторная дисперсия окажется меньше остаточной, то уже отсюда следует справедливость гипотезы о равен­стве групповых средних и, значит, нет надобности прибегать к кри­терию F,

Замечание 2. Если нет уверенности в справедливости пред­положения о равенстве дисперсий рассматриваемых р совокупностей, То это предположение следует проверить предварительно, напрнмер по критерию Кочрена.

Пример. Произведено по 4 испытания на каждом нз трех уров­ней. Результаты испытаний приведены в табл. 32. Методом диспер­сионного анализа при уровне значимости 0,05 проверить нулевую


Номер испытания Уровни фактора Fj
i Р, Р . F,
       
       
       
       
*гр/      






Дата добавления: 2015-09-06; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия