Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсионного анализа





Вернемся к задаче, поставленной в § 1: прове­рить при заданном уровне значимости нулевую гипотезу о равенстве нескольких (р > 2) средних нормальных со­вокупностей с неизвестными, но одинаковыми дисперси» ями. Покажем, что решение этой задачи сводится к срав­нению факторной и остаточной дисперсий по критерию Фишера — Снедекора (см. гл. XIX, § 8).

Пусть нулевая гипотеза о равенстве нескольких средних (далее будем называть их групповыми) пра­вильна. В этом случае факторная и остаточная дисперсии являются несмещенными оценками неизвестной генераль­ной дисперсии (см. § 4) и, следовательно, различаются незначимо. Если сравнить эти оценки по критерию F, то очевидно, критерий укажет, что нулевую гипотезу о равенстве факторной и остаточной дисперсий следует принять.

Таким образом, если гипотеза о равенстве групповых средних правильна, то верна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Пусть нулевая гипотеза о равенстве групповых средних ложна. В этом случае с возрастанием расхожде­ния между групповыми средними увеличивается фактор­ная дисперсия, а вместе с ней и отношение F„a6j[sJaKT/s5cT. В итоге /^абл окажется больше FKp и, следовательно, гипотеза о равенстве дисперсий будет отвергнута.

Таким образом, если гипотеза о равенстве групповых средних ложна, то ложна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Легко доказать от противного справедливость обрат­ных утверждений: из правильности (ложности) гипотезы о дисперсиях следует правильность (ложность) гипотезы о средних.

Итак, для того чтобы проверить нулевую гипотезу о равенстве групповых средних нормальных совокупностей с одинаковыми дисперсиями, достаточно проверить по критерию F нулевую гипотезу о равенстве факторной и остаточной дисперсий. В этом и состоит метод диспер­сионного анализа.

Замечание 1. Если факторная дисперсия окажется меньше остаточной, то уже отсюда следует справедливость гипотезы о равен­стве групповых средних и, значит, нет надобности прибегать к кри­терию F,

Замечание 2. Если нет уверенности в справедливости пред­положения о равенстве дисперсий рассматриваемых р совокупностей, То это предположение следует проверить предварительно, напрнмер по критерию Кочрена.

Пример. Произведено по 4 испытания на каждом нз трех уров­ней. Результаты испытаний приведены в табл. 32. Методом диспер­сионного анализа при уровне значимости 0,05 проверить нулевую


Номер испытания Уровни фактора Fj
i Р, Р . F,
       
       
       
       
*гр/      






Дата добавления: 2015-09-06; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия