Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предмет метода Монте — Карло





Датой рождения метода Монте — Карло принято считать 1949 г., когда американские ученые Н. Метропо- лис и С. Улам опубликовали статью «Метод Монте — Карло», в которой систематически его изложили. Назва­ние метода связано с названием города Монте — Карло, где в игорных домах (казино) играют в рулетку — одно из простейших устройств для получения случайных чисел, на использовании которых основан этот метод.

ЭВМ позволяют легко получать так называемые псев­дослучайные числа (при решении задач их применяют вместо случайных чисел); это привело к широкому внедре­нию метода во многие области науки и техники (статисти­ческая физика, теория массового обслуживания, теория игр и др.). Метод Монте—Карло используют для вычис­ления интегралов, в особенности многомерных, для реше­ния систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологи­ческих и т. д.).

Сущность метода Монте — Карло состоит в следующем: требуется найти значение а некоторой изу­чаемой величины. Для этого выбирают такую случайную величину X, математическое ожидание которой равно а:

М (Х) = а.

Практически же поступают так: производят п испы­таний, в результате которых получают п возможных зна­чений Х\ вычисляют их среднее арифметическое и принимают х в качестве оценки (приближенного значе­ния) а* искомого числа а:

а ~ а* = х.

Поскольку метод Монте — Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указы­вает, как наиболее целесообразно выбрать случайную величину X, как найти ее возможные значения. В част­ности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*.

Отыскание возможных значений случайной величины X (моделирование) называют «разыгрыванием случайной ве­личины». Изложим лишь некоторые способы разыгрывания случайных величин и укажем, как оценить допускаемую при этом ошибку.







Дата добавления: 2015-09-06; просмотров: 516. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия