Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разыгрывание полной группы событий





Разыгрывание полной группы п (п > 2) несов­местных событий Аи А2,...,А„, вероятности которых plt р2, известны, можно свести к разыгрыванию

дискретной случайной величины X со следующим законом распределения (для определенности примем хг= 1, дса = 2,.. хп = п):

X 1 2... п Р Pi Р*--- Рп

Действительно, достаточно считать, что если в испы­тании величина X приняла значение X; = t (i — 1, 2,..., я), то наступило событие А,-. Справедливость этого утвержде­ния следует из того, что число п возможных значений X равно числу событий полной группы н вероятности воз­можных значений х,- н соответствующих им событий А{ одинаковы: Р(Х = х1) = Р(А{)=р(. Таким образом, появ­ление в испытании события А равносильно событию, состоящему в том, что дискретная случайная величина X приняла возможное значение х,.

Правило. Для того чтобы разыграть испытания, в каж­дом из которых наступает одно из событий Alt AtАп

полной группы, вероятности которых рг, р, из­вестны, достаточно разыграть (по правилу § 4) дискретную случайную величину X со следующим законом распреде­ления:

2... п

Р Pi Р» • • • Ря

Если в испытании величина X приняла возможное зна­чение *, = *, то наступило событие Л,.

Пример 1. Заданы вероятности четырех событий, образующих полную группу: (Л1)=0,19, р,=Р (А|)=0,21, р,«=Р (Л,)=0,34, р4 = Л (у44)=0,26. Разыграть б испытаний, в каждом из которых появляется одно из четырех заданных событий.

Решение. В соответствии с правилом, приведенным в настоящем параграфе, надо разыграть дискретную случайную величину'X, закон распределения которой

X 1 2 3 4 р 0,19 0,21 0,34 0,26

По правилу § 4 разобьем интервал (0,1) иа четыре частичных интервала: Дх — (0; 0,19), Д,—(0,19; 0,40), А»—(0,40; 0,74), Д4— (0,74; 1). Выберем из таблицы приложения 9 пять случайных чисел, например: 0,66; 0,31; 0,85; 0,63; 0,73. Так как случайное число ^ = 0,66 принадлежит интервалу Д3, то Х=3, следовательно, наступило собы­тие At. Аналогично найдем остальные события.

Итак, искомая последовательность событий такова:

А%, At, At, At, Аг.

Пример 2. События А и В независимы н совместны. Разыграть 6 испытаний, в каждом из которых вероятность появления события А равна 0,6, а вероятность появления события В равна 0,2.

Решение. Возможны 4 исхода испытания:

At*=AB, причем в силу независимости событий Р (АВ) = *=Р (А)-Р (В) = 0,6-0,2 = 0,12;

АЖ**АВ, причем Р (АВ)=0,6-0,8—0,48;

At**AB, причем Р (А5)>= 0,4-0,2 = 0,08;

А«=АВ, причем Р (АВ) — 0,4-0,8 = 0,32.

Таким образом, задача сведена к разыгрыванию полной группы четырех событий: Ах с вероятностью р, = 0,12, Аш с вероятностью ра» 0,48, А, с вероятностью р, = 0,08 н с вероятностью р* = 0,32.

В свою очередь, в соответствии с правилом настоящего пара­графа эта задача сводится к разыгрыванию дискретной случайной величины X, закон распределения которой

АТ I 2 3 4 р 0,12 0,48 0,08 0,32

Используем правило § 4. Выберем 6 случайных чисел, например:

45; 0,65; 0,06; 0,59; 0,33^ 0,70. Построим частичные интервалы: Лх — (0; 0,12), Д2 — (0,12; 0,60); Д8 —(0,60; 0.68), Д4-(0,68; 1). Слу­чайное число /1 = 0,45 принадлежит интервалу Л2, поэтому наступило событие А% — АВ. Аналогично найдем исходы остальных испытаний.

Итак, искомая последовательность исходов разыгранных испыта­ний такова: АВ, АВ, АВ, АВ, АВ, AS.

Пример 3. События А к В зависимы н совместны. Разыграть 4 испытания, в каждом из которых заданы вероятности Р(/4)=0,8, Р(В) = 0,6, Р (/4В) = 0,5,

Решение. Возможны 4 исхода испытания:

Аг = АВ, причем, по условию, Р (АВ) = 0,Ь',

Л2 — АВ, примем Р (АВ) = Р (А) —Р(.Д5)=>0,8— 0,5 = 0,3;

Аг — АВ, причем Р (АВ) = Р (В) — Р(ЛВ)=0,6—0,5 = 0,1;

А4 = АВ, причем Р(АВ)*=1 — [Р Ш +Р (AJ +Р (Аа)]= 1—

(0,5 + 0,3 + 0,1) = 0,1.

Таким образом, задача сведена к разыгрыванию полной группы четырех событий: Ах с вероятностью 0,5, Ая с вероятностью 0,3, Аа с вероятностью 0,1 и л4 с вероятностью 0,1 и А4 с вероятно­стью 0,1.

Рекомендуем закончить решение самостоятельно, считая для определенности, что выбраны случайные числа:_0,65; 0,06; 0,59; 0,3?.

Для контроля приводим ответ: АВ, АВ, АВ, АВ.

Пояснение. Так как A—AB-j-AB, то Р (А)=Р (AB)-j-P (АВ). Отсюда

Р (АВ) = Р(А) — Р(АВ).







Дата добавления: 2015-09-06; просмотров: 1197. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия