Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Случайные числа





Ранее было указано, что метод Монте—Карло основан на применении случайных чисел; дадим опреде­ление этих чисел. Обозначим через R непрерывную слу­чайную величину, распределенную равномерно в интер­вале (0, 1).

Случайными числами называют возможные значения г непрерывной случайной величины R, распределенной равномерно в интервале (0, 1).

В действительности пользуются не равномерно рас­пределенной случайной величиной R, возможные значе­ния которой, вообще говоря, имеют бесконечное число десятичных знаков, а квазиравномерной случайной величиной R*, возможные значения которой имеют к о- нечное число знаков. В результате замены R на R* разыгрываемая величина имеет не точно, а прибли­женно заданное распределение. В приложении 9 при­ведена таблица случайных чисел, заимствованная из книги: Большее JI. Н., Смирнов Н. В. Таблицы математической статистики. М., «Наука», 1965, с. 428.

Обозначим через R непрерывную случайную величину, распределенную равномерно в интервале (О, 1), а через г j (/ = 1,2,...)—ее возможные значения, т. е. случайные числа.

Разобьем интервал 0 < R < 1 на оси Or точками

с координатами plt рх + р,, Рх + Р. + Р, Р,+Р,+...

•••+Рл-1 на п частичных интервалов Alt А,,...,ДЯ:

Дл. Д1 = р1—0 = Рх,

Дл. А, = (рх + р,)—Рх = Р„

Дл. А„= 1 — (pi + pt+ ... +р„-1) = ря.

Видим, что длина частичного интервала с индексом i равна вероятности с тем же индексом:

Дл. Д/«р/. (#)

Теорема. Если каждому случайному числу г{ (0 < rf < 1), которое попало в интервал А/, ставить в соответствие возможное значение х(, то разыгрываемая величина будет иметь заданный закон распределения:

X хг xt... хя

Р Pi Р* ' Рш

Доказательство. Так как при попадании слу* чайного числа rf в частичный интервал Д/ разыгрываемая величина принимает возможное значение х{, а таких интервалов всего п, то разыгрываемая величина имеет те же возможные значения, что и X, а именно xlt xt, ..., х„.

Вероятность попадания случайной величины R в ин­тервал А/ равна его длине (см. гл. XI, § 6, замечание), а в силу (») Дл. А, = р/. Таким образом, вероятность попадания R в интервал А* равна р,. Следова­тельно, вероятность того, что разыгрываемая величина примет возможное значение х(, также равна р, (поскольку мы условились в случае попадания случайного числа rt в интервал А/ считать, что разыгрываемая величина при­няла возможное значение X/). Итак, разыгрываемая ве­личина имеет заданный закон распределения.

Правило. Для того чтобы разыграть дискретную слу* чайную величину, заданную законом распределения

Xj xt... х„

Р Pi Pt ••• Рп

надо: 1) разбить интервал (0, 1) оси Or на п частичных интервалов: Aj — (0; ру), Д2 {р{, рг + р,),..Ап — (р1 +

+ р2 + • • • + Pn-i> 0;







Дата добавления: 2015-09-06; просмотров: 528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия