Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства определителя





1. , где – матрица, транспонированная к матрице .

Из этого равенства следует, что любое утверждение, верное для столбцов определителя, верно и для строк определителя и обратно.

2. При умножении произвольной строки определителя на число, определитель умножается на это число.

3. Если строка определителя представлена в виде суммы двух строк, то определитель равен сумме двух определителей, у каждого из которых на месте данной строки стоит одно из слагаемых, а остальные строки прежние.

4. При перестановке двух строк определитель меняет знак.

5. Если строки определителя линейно зависимы, то определитель равен нулю.

6. Определитель не изменится, если к строке прибавить линейную комбинацию других строк определителя.

Задача 3(1). Доказать, что определитель равен нулю.

Решение. ,так как первый и третий столбцы пропорциональны.

Задача 3(2). Доказать, что определитель равен нулю, если - корни уравнения .

Решение. По формулам Виета коэффициент при равен сумме корней уравнения с обратным знаком, т.е. . Следовательно, строки определителя линейно зависимы, так как их сумма равна нулю.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Пользуясь свойствами определителя, доказать, что следующие определители равны нулю.

3.1. . 3.2 .

3.3. . 3.4. .







Дата добавления: 2015-09-07; просмотров: 710. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия