Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание. 2. Вычислить , где - внутренность треугольника с вершинами ,





2. Вычислить , где - внутренность треугольника с вершинами , , .

2. Изменить порядок интегрирования в двойном интеграле .

Литература

1. Н.С. Пискунов «Дифференциальное и интегральное исчисления» ч.2., гл. XIV, § 1 – 3.

2. П.Е. Данко «Высшая математика в упражнениях и задачах» ч.2., гл. I, § 1.

п 4. Вычисление двойного интеграла в полярных координатах.

 


Для упрощения вычисления двойного интеграла часто применяют метод подстановки, т.е. вводят новые переменные под знак двойного интеграла.

Пусть , , причем данные функции имеют непрерывные частные производные первого порядка в области плоскости и отличный от нуля определитель

(4)

Функция непрерывна в области . Тогда справедлива формула замены переменных в двойном интеграле:

(5)

Определитель называется определителем Якоби (немецкий математик) или Якобианом.

Чаще всего при вычислении двойного интеграла переходят к полярным координатам , .

Вычислим Якобиан перехода к полярным координатам

.

Тогда

, (6)

где - область интегрирование в полярной системе координат.

Рисунок 7 – Область

 

 

Для вычисления двойного интеграла в полярных координатах применяют то же правило сведение его к двукратному интегралу.

Пусть область ограничена лучами и , кривыми и . Если луч, выходящий из полюса пересекает границу области не более чем в двух точках, то область - правильная.

. (7)

При вычислении внутреннего интеграла считаем постоянным.

Замечание. Переход к полярным координатам полезен тогда, когда область интегрирования есть круг или его часть и когда подынтегральная функция содержит выражение .

Пример 2. Вычислить двойной интеграл , если область ограничена полуокружностью и осью .

Решение.

1. Изобразим область

Рисунок 8 – Область

 

2. Перейдем к полярным координатам , , .

3. Найдем пределы интегрирования: , .

4. Вычислим интеграл

Пример 3. Вычислить , если область ограничена окружностью .

 







Дата добавления: 2015-10-12; просмотров: 654. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия