Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление двойного интеграла в декартовых координатах





Вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.

Пусть требуется вычислить двойной интеграл , где функция непрерывна в области . Как известно, двойной интеграл выражает объем цилиндрического тела. Найдем этот объем, используя метод параллельных сечений:

, где - площадь сечения плоскостью, перпендикулярной оси , а , - уравнение плоскостей, ограничивающих данное тело.

Пусть область представляет криволинейную трапецию, ограниченную прямыми и , кривыми и , причем функции и непрерывны и для . Область правильная в направлении оси .

Рисунок 4

 

Постоим сечение цилиндрического тела плоскостью, перпендикулярной оси : , где .

Рисунок 5 – Цилиндрическое тело

 

В сечении получим криволинейную трапецию , ограниченную линиями , где , , и .

Площадь данной трапеции находим с помощью определенного интеграла

.

Согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найден так:

.

Объем цилиндрического тела можно вычислить с помощью двойного интеграла . Следовательно,

.

Данное равенство можно записать в идее:

(2)

Правую часть формулы (2) называют двукратным или повторным интегралом от функции по области .

Интеграл называют внутренним интегралом.

При вычислении двукратного интеграла сначала берем внутренний интеграл, считая постоянным, а затем внешний интеграл, результат внутреннего интеграла интегрируем по переменной в пределах от до .

Если область ограничена прямыми и , кривыми и , причем для всех , т.е. область - параллельная в направлении оси , то

(3)

В данном случае, при вычислении внутреннего интеграла, считаем постоянным.

Нужно помнить, что пределы внешнего интеграла всегда постоянны.

Пример 1. Вычислить , где область ограничена линиями , , .

Решение. Изобразим область интегрирования

 

Рисунок 6 – Область

 

Найдем точку пересечения кривых и :

.

Тогда и . Нашей области принадлежит точка .

Для вычисления данного интеграла воспользуемся формулой (3), т.е. спроектируем область на ось в отрезок , тогда и .

При вычислении данного интеграла по формуле (2) нужно область разбить прямой на две область и , тогда .

Область проектируется на ось в отрезок , а область - в отрезок .

Получили тот же результат.

Если область является правильной, т.е. всякая прямая параллельная любой оси координат, пересекает границу области не более чем в двух точках, то

,

т.е. двойной интеграл не зависит от порядка интегрирования.

 

Вопросы для самоконтроля

1. Что такое интегральная сумма для функции по области ?

2. Что называется двойным интегралом от функции по области ?

3. Геометрический смысл двойного интеграла.

4. Физический смысл двойного интеграла.

5. Какая область называется правильной в направлении оси , а какая – в направлении оси .

6. Как вычислить двойной интеграл в декартовых координатах?

7. Как изменить порядок интегрирования в двойном интеграла?








Дата добавления: 2015-10-12; просмотров: 1586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия