Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Домашнее задание №5.





а) Вычислить определенные интегралы:

1. 1.
2. 2.
3.

б) Вычислить площади фигур, ограниченные линиями:

1.
2.

в) Самоподготовка (изучить и законспектировать по учебнику Ю.В. Морозова «Основы высшей математики и статистики» М., 1998, стр. стр. 85-102 ):

1. Понятие дифференциального уравнения.

2. Чем определяется порядок дифференциального уравнения?

3. Что называют общим и частным решением дифференциального уравнения?

4. Алгоритм решения дифференциальных уравнений первого порядка с разделяющимися переменными.

 

Занятие №6. Дифференциальные уравнения

I порядка

Теоретические вопросы.

1. Понятие дифференциального уравнения.

2. Чем определяется порядок дифференциального уравнения?

3. Чем отличается общее и частные решения дифференциального уравнения?

4. Дифференциальные уравнения первого порядка с разделяющимися переменными, их решение.

5. Дифференциальные уравнения первого порядка с разделяющимися переменными, их решение на примере вывода физического закона, определяющего ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде (закон Бугера).

Литература для подготовки:

1) Ю.В. Морозов «Основы высшей математики и статистики» М., 1998, стр. 68-72, 74-76, 79-82, 85-92, 99-102.

2) М.С. Федорова «Методическая разработка для самостоятельной подготовки по курсу «Высшая математика и информатика» для студентов лечебного и медико-профилактического факультетов», М., 2002.

3) Антонов В.Ф., Черныш А.М., Козлова Е.К., Коржуев А.В. Физика и биофизика. ГЭОТАР-Медиа.2010.

На практическом занятии выполнить задания:

.Найти общие и частные решения следующих задач математического моделирования в биофзике:

1) Фармакокинетическая модель

Уменьшение концентрации лекарственного средства в крови пациента при введении его в организм методом инъекции за единицу времени пропорционально его концентрации в данный момент времени, коэффициент пропорциональности – a. Составить дифференциальное уравнение. Найти зависимость концентрации вещества от времени, если при t=0, C=C0, построить график зависимости C(t).

2) Модель естественного роста численности популяции (Модель Мальтуса)

Увеличение численности кроликов, завезённых в Австралию на кораблях Первого флота в 1788 году, за единицу времени пропорционально их количеству в данный момент времени (коэффициент пропорциональности – k). Составить дифференциальное уравнение. Найти общее и частное решения, если при t=0, N= N0. Построить график естественного роста популяции кроликов в Австралии. Проверить полученное решение на адекватность.

Решить задачу.

Составить дифференциальное уравнение для радиоактивного распада, если скорость уменьшения количества нераспавшихся атомов, пропорциональна их количеству N в данный момент времени (коэффициент пропорциональности – a). Найти общее и частное решения, если при t=0, N= 108.







Дата добавления: 2015-10-15; просмотров: 581. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия